स्पेक्ट्रम (टोपोलॉजी)
बीजगणितीय टोपोलॉजी में, गणित की एक शाखा, एक स्पेक्ट्रम एक वस्तु प्रतिनिधित्व योग्य फ़ंक्शनल है जो कोहोमोलॉजी # सामान्यीकृत कोहोमोलॉजी सिद्धांत है। ऐसा प्रत्येक कोहोमोलोजी सिद्धांत प्रतिनिधित्वयोग्य है, जैसा कि ब्राउन के प्रतिनिधित्वयोग्यता प्रमेय से निम्नानुसार है। इसका मतलब यह है कि, एक कोहोमोलॉजी सिद्धांत <ब्लॉककोट> दिया गया है,वहाँ रिक्त स्थान मौजूद हैं जैसे कि कोहोमोलॉजी सिद्धांत का डिग्री में मूल्यांकन करना एक स्थान पर अंतरिक्ष में मानचित्रों के समरूप वर्गों की गणना करने के बराबर है , वह <ब्लॉककोट> है.ध्यान दें कि स्पेक्ट्रा की कई अलग-अलग श्रेणियां (गणित) हैं, जिससे कई तकनीकी कठिनाइयां पैदा होती हैं,[1] लेकिन वे सभी एक ही समरूप श्रेणी निर्धारित करते हैं, जिसे स्थिर समरूप श्रेणी के रूप में जाना जाता है। यह स्पेक्ट्रा शुरू करने के लिए प्रमुख बिंदुओं में से एक है क्योंकि वे स्थिर होमोटॉपी सिद्धांत के लिए एक प्राकृतिक घर बनाते हैं।
स्पेक्ट्रम की परिभाषा
परिभाषा के कई रूप हैं: सामान्य तौर पर, एक स्पेक्ट्रम कोई अनुक्रम होता है संरचना मानचित्रों के साथ नुकीले टोपोलॉजिकल स्थानों या नुकीले सरल सेटों का , कहाँ स्मैश उत्पाद है. एक नुकीले स्थान का तोड़ उत्पाद एक वृत्त के साथ कम निलंबन के लिए होमियोमोर्फिक है , निरूपित .
निम्नलिखित फ्रैंक एडम्स (1974) के कारण है: एक स्पेक्ट्रम (या सीडब्ल्यू-स्पेक्ट्रम) एक अनुक्रम है समावेशन के साथ सीडब्ल्यू कॉम्प्लेक्स का निलंबन का (टोपोलॉजी) के उपसंकुल के रूप में .
अन्य परिभाषाओं के लिए, सममित स्पेक्ट्रम और सरल स्पेक्ट्रम देखें।
एक स्पेक्ट्रम के समरूप समूह
स्पेक्ट्रा के सबसे महत्वपूर्ण अपरिवर्तनीयों में से एक स्पेक्ट्रम के होमोटॉपी समूह हैं। ये समूह रिक्त स्थान के स्थिर समरूप समूहों की परिभाषा को प्रतिबिंबित करते हैं क्योंकि निलंबन मानचित्रों की संरचना इसकी परिभाषा में अभिन्न है। एक स्पेक्ट्रम दिया गया समरूप समूह को परिभाषित करें कोलिमिट<ब्लॉककोट> के रूप मेंजहां मानचित्र मानचित्र की संरचना से प्रेरित होते हैं (वह है, की कार्यात्मकता द्वारा दिया गया ) और संरचना मानचित्र . एक स्पेक्ट्रम को संयोजी स्पेक्ट्रम कहा जाता है यदि ऐसा है ऋणात्मक k के लिए शून्य हैं।
उदाहरण
ईलेनबर्ग-मैकलेन स्पेक्ट्रम
एकवचन सहसंगति पर विचार करें एबेलियन समूह में गुणांकों के साथ . सीडब्ल्यू कॉम्प्लेक्स के लिए , समूह मानचित्रों के समरूप वर्गों के सेट से पहचाना जा सकता है को , होमोटॉपी के साथ ईलेनबर्ग-मैकलेन स्पेस डिग्री में केंद्रित है . हम इसे <ब्लॉककोट> के रूप में लिखते हैंफिर संबंधित स्पेक्ट्रम है -वाँ स्थान ; इसे ईलेनबर्ग-मैकलेन स्पेक्ट्रम कहा जाता है . ध्यान दें कि इस निर्माण का उपयोग किसी भी रिंग को एम्बेड करने के लिए किया जा सकता है स्पेक्ट्रा की श्रेणी में. यह एम्बेडिंग वर्णक्रमीय ज्यामिति का आधार बनाती है, जो व्युत्पन्न बीजगणितीय ज्यामिति के लिए एक मॉडल है। इस एम्बेडिंग के महत्वपूर्ण गुणों में से एक आइसोमोर्फिज्म<ब्लॉककोट> हैस्पेक्ट्रा की श्रेणी दिखाने से कम्यूटेटिव रिंग्स की व्युत्पन्न जानकारी पर नज़र रखी जाती है, जहां स्मैश उत्पाद व्युत्पन्न टेंसर उत्पाद के रूप में कार्य करता है। इसके अलावा, ईलेनबर्ग-मैकलेन स्पेक्ट्रा का उपयोग कम्यूटेटिव रिंगों के लिए टोपोलॉजिकल होशचाइल्ड होमोलॉजी जैसे सिद्धांतों को परिभाषित करने के लिए किया जा सकता है, जो शास्त्रीय होशचाइल्ड होमोलॉजी की तुलना में अधिक परिष्कृत सिद्धांत है।
टोपोलॉजिकल कॉम्प्लेक्स के-सिद्धांत
दूसरे महत्वपूर्ण उदाहरण के रूप में, टोपोलॉजिकल के-सिद्धांत पर विचार करें। कम से कम एक्स कॉम्पैक्ट के लिए, इसे X पर जटिल वेक्टर बंडलों के मोनोइड के ग्रोथेंडिक समूह के रूप में परिभाषित किया गया है। इसके अलावा, एक्स के निलंबन पर वेक्टर बंडलों के अनुरूप समूह है। टोपोलॉजिकल के-सिद्धांत एक सामान्यीकृत कोहोमोलॉजी सिद्धांत है, इसलिए यह एक स्पेक्ट्रम देता है। शून्यवाँ स्थान है जबकि पहला स्थान है . यहाँ अनंत एकात्मक समूह है और इसका वर्गीकरण स्थान है। बॉट आवधिकता से हमें प्राप्त होता है और सभी n के लिए, इसलिए टोपोलॉजिकल K-थ्योरी स्पेक्ट्रम में सभी स्थान या तो दिए गए हैं या . जटिल वेक्टर बंडलों के बजाय वास्तविक वेक्टर बंडलों का उपयोग करके एक संबंधित निर्माण होता है, जो 8-आवधिक स्पेक्ट्रम देता है।
क्षेत्र स्पेक्ट्रम
स्पेक्ट्रम का सर्वोत्कृष्ट उदाहरण गोलाकार स्पेक्ट्रम है . यह एक ऐसा स्पेक्ट्रम है जिसके समरूपी समूह गोले के स्थिर समरूपी समूहों द्वारा दिए जाते हैं, इसलिए <ब्लॉकक्वोट>हम इस स्पेक्ट्रम को स्पष्ट रूप से इस प्रकार लिख सकते हैं कहाँ . ध्यान दें कि स्मैश उत्पाद इस स्पेक्ट्रम<ब्लॉककोट> पर एक उत्पाद संरचना देता हैएक वलय संरचना उत्पन्न करता है . इसके अलावा, यदि सममित स्पेक्ट्रम की श्रेणी पर विचार किया जाए, तो यह प्रारंभिक वस्तु का निर्माण करता है क्रमविनिमेय वलय की श्रेणी में।
थॉम स्पेक्ट्रा
स्पेक्ट्रा का एक और विहित उदाहरण थॉम स्पेक्ट्रम से आता है जो विभिन्न सह-बॉर्डिज्म सिद्धांतों का प्रतिनिधित्व करता है। इसमें वास्तविक सह-बॉर्डिज्म शामिल है , जटिल सह-बॉर्डिज्म , फ्रेम्ड कोबॉर्डिज्म, स्पिन कोबॉर्डिज्म , स्ट्रिंग कोबॉर्डिज्म , और व्हाइटहेड टावर। वास्तव में, किसी भी टोपोलॉजिकल समूह के लिए एक थॉम स्पेक्ट्रम है .
सस्पेंशन स्पेक्ट्रम
एक स्पेक्ट्रम का निर्माण एक स्थान से किया जा सकता है। किसी स्थान का निलंबन स्पेक्ट्रम , निरूपित एक स्पेक्ट्रम है (संरचना मानचित्र पहचान हैं।) उदाहरण के लिए, 0-गोले का निलंबन स्पेक्ट्रम ऊपर चर्चा किया गया गोलाकार स्पेक्ट्रम है। इस स्पेक्ट्रम के होमोटॉपी समूह तब के स्थिर होमोटॉपी समूह होते हैं , इसलिए <ब्लॉककोट></ब्लॉकउद्धरण>निलंबन स्पेक्ट्रम के निर्माण से पता चलता है कि प्रत्येक स्थान को कोहोमोलॉजी सिद्धांत के रूप में माना जा सकता है। वास्तव में, यह एक फ़ंक्टर<ब्लॉककोट> को परिभाषित करता हैसीडब्ल्यू कॉम्प्लेक्स की होमोटॉपी श्रेणी से लेकर स्पेक्ट्रा की होमोटॉपी श्रेणी तक। आकारिकी <ब्लॉककोट> द्वारा दी गई हैजो फ्रायडेन्थल निलंबन प्रमेय द्वारा अंततः स्थिर हो जाता है। इससे हमारा तात्पर्य <ब्लॉककोट> से है और कुछ परिमित पूर्णांक के लिए . सीडब्ल्यू कॉम्प्लेक्स के लिए एक उलटा निर्माण है जो एक स्पेक्ट्रम लेता है और एक स्थान <ब्लॉककोट> बनाता हैस्पेक्ट्रम का अनंत लूप स्पेस कहलाता है। सीडब्ल्यू कॉम्प्लेक्स के लिए <ब्लॉककोट>और यह निर्माण एक समावेशन के साथ आता है हरएक के लिए , इसलिए एक नक्शा<ब्लॉककोट> देता हैजो कि इंजेक्शन है. दुर्भाग्य से, ये दो संरचनाएं, स्मैश उत्पाद के जुड़ने से, स्पेक्ट्रा के सिद्धांत में महत्वपूर्ण जटिलता पैदा करती हैं क्योंकि स्पेक्ट्रा की एक भी श्रेणी मौजूद नहीं हो सकती है जो इन संरचनाओं से संबंधित पांच सिद्धांतों की सूची को संतुष्ट करती हो।[1]उपरोक्त संयोजन केवल रिक्त स्थान और स्पेक्ट्रा की होमोटॉपी श्रेणियों में मान्य है, लेकिन हमेशा स्पेक्ट्रा की एक विशिष्ट श्रेणी (होमोटॉपी श्रेणी नहीं) के साथ नहीं।
Ω-स्पेक्ट्रम
Ω-स्पेक्ट्रम एक ऐसा स्पेक्ट्रम है जो संरचना मानचित्र (यानी, मानचित्र) का जोड़ है) एक कमजोर तुल्यता है। रिंग का K-सिद्धांत स्पेक्ट्रम Ω-स्पेक्ट्रम का एक उदाहरण है।
रिंग स्पेक्ट्रम
एक रिंग स्पेक्ट्रम एक स्पेक्ट्रम X है, जैसे कि स्मैश उत्पादों के संदर्भ में वलय स्वयंसिद्ध का वर्णन करने वाले आरेख होमोटॉपी तक पहुंचते हैं ( पहचान से मेल खाता है।) उदाहरण के लिए, टोपोलॉजिकल के-सिद्धांत का स्पेक्ट्रम एक रिंग स्पेक्ट्रम है। एक 'मॉड्यूल स्पेक्ट्रम' को अनुरूप रूप से परिभाषित किया जा सकता है।
कई और उदाहरणों के लिए, कोहोमोलॉजी सिद्धांतों की सूची देखें।
स्पेक्ट्रा के कार्य, मानचित्र और समरूपता
तीन प्राकृतिक श्रेणियां हैं जिनकी वस्तुएं स्पेक्ट्रा हैं, जिनकी आकृतियाँ फ़ंक्शन, या मानचित्र, या होमोटॉपी वर्ग हैं जिन्हें नीचे परिभाषित किया गया है।
दो स्पेक्ट्रा ई और एफ के बीच एक फ़ंक्शन ई से मानचित्रों का एक अनुक्रम हैn एफ कोn जिसके साथ आवागमन होता है मानचित्र ΣEn→ औरn+1 और ΣFn→एफn+1.
एक स्पेक्ट्रम दिया गया , एक सबस्पेक्ट्रम उपसंकुलों का एक क्रम है जो एक स्पेक्ट्रम भी है। जैसे प्रत्येक आई-सेल में एक (i+1)-सेल में निलंबित हो जाता है , एक कोफ़ाइनल सबस्पेक्ट्रम एक सबस्पेक्ट्रम है जिसके लिए मूल स्पेक्ट्रम की प्रत्येक कोशिका एक सीमित संख्या में निलंबन के बाद अंततः सबस्पेक्ट्रम में समाहित हो जाती है। फिर स्पेक्ट्रा के मानचित्र को परिभाषित करके स्पेक्ट्रा को एक श्रेणी में बदला जा सकता है सह-अंतिम उप-स्पेक्ट्रम से एक फ़ंक्शन होना का को , जहां दो ऐसे फ़ंक्शन एक ही मानचित्र का प्रतिनिधित्व करते हैं यदि वे कुछ सह-अंतिम उप-स्पेक्ट्रम पर मेल खाते हैं। सहज रूप से स्पेक्ट्रा के ऐसे मानचित्र को हर जगह परिभाषित करने की आवश्यकता नहीं होती है, बस अंततः परिभाषित हो जाता है, और दो मानचित्र जो एक सह-अंतिम उप-स्पेक्ट्रम पर मेल खाते हैं, समतुल्य कहे जाते हैं। यह 'स्पेक्ट्रा की श्रेणी' (और मानचित्र) देता है, जो एक प्रमुख उपकरण है। इस श्रेणी में नुकीले सीडब्ल्यू कॉम्प्लेक्स की श्रेणी का एक स्वाभाविक एम्बेडिंग है: यह लेता है निलंबन स्पेक्ट्रम के लिए जिसमें एनवां कॉम्प्लेक्स है .
एक स्पेक्ट्रम का स्मैश उत्पाद और एक नुकीला परिसर द्वारा दिया गया एक स्पेक्ट्रम है (स्मैश उत्पाद की संबद्धता से तुरंत पता चलता है कि यह वास्तव में एक स्पेक्ट्रम है)। स्पेक्ट्रा के बीच मानचित्रों की एक समरूपता एक मानचित्र से मेल खाती है , कहाँ असंयुक्त संघ है साथ आधारबिंदु माना जाता है।
स्थिर होमोटॉपी श्रेणी, या (सीडब्ल्यू) स्पेक्ट्रा की होमोटॉपी श्रेणी को उस श्रेणी के रूप में परिभाषित किया गया है जिसकी वस्तुएं स्पेक्ट्रा हैं और जिनकी आकृतियाँ स्पेक्ट्रा के बीच मानचित्रों की होमोटॉपी कक्षाएं हैं। स्पेक्ट्रम की कई अन्य परिभाषाएँ, जिनमें से कुछ बहुत भिन्न दिखाई देती हैं, समतुल्य स्थिर समरूप श्रेणियों की ओर ले जाती हैं।
अंत में, हम किसी स्पेक्ट्रम के निलंबन को परिभाषित कर सकते हैं . यह अनुवाद निलंबन उलटा है, क्योंकि हम सेटिंग करके निलंबित भी कर सकते हैं .
स्पेक्ट्रा की त्रिकोणीय समरूप श्रेणी
स्थिर होमोटॉपी श्रेणी योगात्मक है: होमोटॉपी समूहों को परिभाषित करने के लिए उपयोग किए जाने वाले ट्रैक जोड़ के एक प्रकार का उपयोग करके मानचित्र जोड़े जा सकते हैं। इस प्रकार एक स्पेक्ट्रम से दूसरे स्पेक्ट्रम तक समरूप वर्ग एक एबेलियन समूह बनाते हैं। इसके अलावा स्थिर होमोटॉपी श्रेणी त्रिकोणीय श्रेणी (वोग्ट (1970)) है, जो बदलाव निलंबन द्वारा दिया जा रहा है और स्पेक्ट्रा के मैपिंग शंकु (टोपोलॉजी) अनुक्रमों द्वारा प्रतिष्ठित त्रिकोण हैं।
- .
स्पेक्ट्रा के उत्पादों को तोड़ें
स्पेक्ट्रा का स्मैश उत्पाद सीडब्ल्यू कॉम्प्लेक्स के स्मैश उत्पाद का विस्तार करता है। यह स्थिर समरूप श्रेणी को एक मोनोइडल श्रेणी में बनाता है; दूसरे शब्दों में यह एबेलियन समूहों के (व्युत्पन्न) टेंसर उत्पाद की तरह व्यवहार करता है। स्मैश उत्पाद के साथ एक बड़ी समस्या यह है कि इसे परिभाषित करने के स्पष्ट तरीके इसे केवल समरूपता तक सहयोगी और क्रमविनिमेय बनाते हैं। स्पेक्ट्रा की कुछ और हालिया परिभाषाएँ, जैसे कि सममित स्पेक्ट्रम, इस समस्या को खत्म करती हैं, और होमोटॉपी कक्षाओं में जाने से पहले, मानचित्रों के स्तर पर एक सममित मोनोइडल संरचना देती हैं।
स्मैश उत्पाद त्रिकोणीय श्रेणी संरचना के अनुकूल है। विशेष रूप से स्पेक्ट्रम के साथ एक प्रतिष्ठित त्रिकोण का स्मैश उत्पाद एक विशिष्ट त्रिकोण है।
सामान्यीकृत होमोलॉजी और स्पेक्ट्रा की सह-होमोलॉजी
हम किसी स्पेक्ट्रम के स्थिर समरूप समूह|(स्थिर) समरूप समूह को परिभाषित कर सकते हैं
- ,
कहाँ गोला स्पेक्ट्रम है और से मानचित्रों के समरूप वर्गों का समूह है को . हम स्पेक्ट्रम ई के सामान्यीकृत समरूपता सिद्धांत को परिभाषित करते हैं
और इसके सामान्यीकृत कोहोमोलोजी सिद्धांत को परिभाषित करें
यहाँ एक स्पेक्ट्रम या (इसके निलंबन स्पेक्ट्रम का उपयोग करके) एक स्थान हो सकता है।
स्पेक्ट्रा के साथ तकनीकी जटिलताएँ
स्पेक्ट्रा के साथ काम करते समय और स्पेक्ट्रा की एक श्रेणी को परिभाषित करते समय विहित जटिलताओं में से एक इस तथ्य से आती है कि इनमें से प्रत्येक श्रेणी स्पेक्ट्रम के अनंत लूप स्थान से संबंधित पांच स्पष्ट रूप से स्पष्ट सिद्धांतों को संतुष्ट नहीं कर सकती है। <ब्लॉककोट></ब्लॉककोट>भेज रहा है<ब्लॉककोट>सहायक फ़ंक्शनक्टरों की एक जोड़ी , और स्मैश उत्पाद रिक्त स्थान की श्रेणी और स्पेक्ट्रा की श्रेणी दोनों में। अगर हम जाने देंगे आधारित, सघन रूप से उत्पन्न, कमज़ोर हॉसडॉर्फ़ स्थानों की श्रेणी को निरूपित करें, और स्पेक्ट्रा की एक श्रेणी को निरूपित करने के लिए, निम्नलिखित पाँच सिद्धांत स्पेक्ट्रा के विशिष्ट मॉडल से कभी भी संतुष्ट नहीं हो सकते हैं:[1]
- स्मैश उत्पाद के संबंध में एक सममित मोनोइडल श्रेणी है
- फनकार बायीं ओर से जुड़ा हुआ है
- स्मैश उत्पाद के लिए इकाई गोलाकार स्पेक्ट्रम है
- या तो प्राकृतिक परिवर्तन है या एक प्राकृतिक परिवर्तन जो दोनों श्रेणियों में इकाई वस्तु के साथ संचार करता है, और दोनों श्रेणियों में क्रमविनिमेय और साहचर्य समरूपताएँ।
- एक स्वाभाविक कमजोर तुल्यता है के लिए जिसमें एक आवागमन आरेख है:
</ब्लॉकक्वॉट>कहां अनुलग्नक में इकाई मानचित्र है।
इस वजह से, उपयोग किए जा रहे मॉडल के आधार पर स्पेक्ट्रा का अध्ययन खंडित हो गया है। एक सिंहावलोकन के लिए, ऊपर उद्धृत लेख देखें।
इतिहास
स्पेक्ट्रम की अवधारणा का एक संस्करण 1958 में एलोन लागेस लीमा के डॉक्टरेट शोध प्रबंध में पेश किया गया था। उनके सलाहकार एडविन स्पैनियार्ड ने 1959 में इस विषय पर आगे लिखा। स्पेक्ट्रा को 1960 के दशक की शुरुआत में सामान्यीकृत होमोलॉजी सिद्धांतों पर अपने काम में माइकल अतियाह और जॉर्ज डब्ल्यू व्हाइटहेड द्वारा अपनाया गया था। माइकल बोर्डमैन|जे की 1964 डॉक्टरेट थीसिस। माइकल बोर्डमैन ने स्पेक्ट्रा और उनके बीच के मानचित्रों (सिर्फ होमोटॉपी वर्ग नहीं) की एक श्रेणी की एक व्यावहारिक परिभाषा दी, जो स्थिर होमोटॉपी सिद्धांत में उतनी ही उपयोगी है जितनी सीडब्ल्यू कॉम्प्लेक्स की श्रेणी अस्थिर मामले में है। (यह अनिवार्य रूप से ऊपर वर्णित श्रेणी है, और इसका उपयोग अभी भी कई उद्देश्यों के लिए किया जाता है: अन्य खातों के लिए, एडम्स (1974) या रेनर वोग्ट (1970) देखें।) हालांकि 1990 के बाद से महत्वपूर्ण सैद्धांतिक प्रगति हुई है, जिससे औपचारिक रूप से काफी सुधार हुआ है स्पेक्ट्रा के गुण. नतीजतन, हालिया साहित्य ई-अनंत रिंग स्पेक्ट्रम का उपयोग करता है: माइकल मैंडेल और अन्य देखें। (2001) इन नए दृष्टिकोणों के एकीकृत उपचार के लिए।
यह भी देखें
- रिंग स्पेक्ट्रम
- सममित स्पेक्ट्रम
- जी-स्पेक्ट्रम
- मानचित्रण स्पेक्ट्रम
- निलंबन (टोपोलॉजी)
- एडम्स वर्णक्रमीय अनुक्रम
संदर्भ
- ↑ 1.0 1.1 1.2 Lewis, L. Gaunce (1991-08-30). "Is there a convenient category of spectra?". Journal of Pure and Applied Algebra (in English). 73 (3): 233–246. doi:10.1016/0022-4049(91)90030-6. ISSN 0022-4049.
परिचयात्मक
- Adams, J. Frank (1974). स्थिर समरूपता और सामान्यीकृत समरूपता. University of Chicago Press. ISBN 9780226005249.
- Elmendorf, Anthony D.; Kříž, Igor; Mandell, Michael A.; May, J. Peter (1995), "Modern foundations for stable homotopy theory" (PDF), in James., Ioan M. (ed.), Handbook of algebraic topology, Amsterdam: North-Holland, pp. 213–253, CiteSeerX 10.1.1.55.8006, doi:10.1016/B978-044481779-2/50007-9, ISBN 978-0-444-81779-2, MR 1361891
सिद्धांत विकसित करने वाले आधुनिक लेख
- Mandell, Michael A.; May, J. Peter; Schwede, Stefan; Shipley, Brooke (2001), "Model categories of diagram spectra", Proceedings of the London Mathematical Society, Series 3, 82 (2): 441–512, CiteSeerX 10.1.1.22.3815, doi:10.1112/S0024611501012692, MR 1806878, S2CID 551246
ऐतिहासिक रूप से प्रासंगिक लेख
- Atiyah, Michael F. (1961). "बोर्डिज्म और कोबॉर्डिज्म". Proceedings of the Cambridge Philosophical Society. 57 (2): 200–8. doi:10.1017/s0305004100035064. S2CID 122937421.
- Lima, Elon Lages (1959), "The Spanier–Whitehead duality in new homotopy categories", Summa Brasil. Math., 4: 91–148, MR 0116332
- Lima, Elon Lages (1960), "Stable Postnikov invariants and their duals", Summa Brasil. Math., 4: 193–251
- Vogt, Rainer (1970), Boardman's stable homotopy category, Lecture Notes Series, No. 21, Matematisk Institut, Aarhus Universitet, Aarhus, MR 0275431
- Whitehead, George W. (1962), "Generalized homology theories", Transactions of the American Mathematical Society, 102 (2): 227–283, doi:10.1090/S0002-9947-1962-0137117-6
बाहरी संबंध
- Spectral Sequences - Allen Hatcher - contains excellent introduction to spectra and applications for constructing Adams spectral sequence
- An untitled book project about symmetric spectra
- "Are spectra really the same as cohomology theories?".