ऑल-पास फ़िल्टर

From Vigyanwiki
Revision as of 11:47, 3 November 2022 by alpha>Alokchanchal

एक समस्त पारक निस्पंदन एक संकेत प्रसंस्करण है जो की सभी आवृत्ति को समान रूप से लाभ प्रदान करता है, लेकिन विभिन्न आवृत्तियो के बीच चरण संबंध को बदलता है। अधिकांश प्रकार के आवृत्ति कुछ मूल्यों को उस पर लागू संकेत के आयाम (यानी परिमाण) को कम करते हैं, जबकि समस्त पारक आवृत्ति सभी आवृत्तियों को स्तर में बदलाव के बिना अनुमति देता है।

सामान्य अनुप्रयोग

इलेक्ट्रॉनिक संगीत उत्पादन में सामान्य अनुप्रयोग एक इकाई नयी डिजाइन में होते है जिसे "प्रभाव" के रूप में जाना जाता है, जहां समस्त पारक आवृत्ति कई अनुक्रम में जुड़े होते हैं और आउटपुट अपक्व संकेत के साथ मिश्रित होते है।

यह आवृत्ति एक कार्य के रूप में अपने चरणो को बदलकर ऐसा करता है। सामान्यतः, निस्पंदन का वर्णन उस आवृत्ति द्वारा किया जाता है जिस पर चरण स्थानांतरण 90 डिग्री को पार कर जाता है, जब इनपुट और आउटपुट संकेत चतुर्भुज चरण में जाते हैं तब उनके बीच की दुरी एक चौथाई तरंग दैर्ध्य होती है।

वे सामान्यतः प्रणाली में उत्पन्न होने वाले अन्य अवांछित चरण बदलावों के लिए क्षतिपूर्ति करने के लिए उपयोग किए जाते हैं, या एक नोकदार काम्ब निस्पंदन को लागू करने के लिए अपरिवर्तित संस्करण के साथ मिश्रण करने के लिए उपयोग किया जाते है।

उनका उपयोग मिश्रित चरण निस्पंदन को एक समान परिमाण प्रतिक्रिया के साथ न्यूनतम चरण निस्पंदन में या एक स्थिर निस्पंदन को एक समान परिमाण प्रतिक्रिया के साथ स्थिर निस्यंदक में परिवर्तित करने के लिए भी किया जा सकता है।

सक्रिय समधर्मी कार्यान्वयन

[1]


निम्न पारक निस्पंदन का उपयोग करके कार्यान्वयन

एक कम-पास निस्पंदन को शामिल करने वाला एक ऑप-एम्प बेस समस्त पारक निस्पंदन।

आसन्न आकृति में दिखाया गया संक्रियात्मक प्रवर्धक परिपथ एक एक ध्रुवी निष्क्रियता समस्त पारक आवृत्ति को लागू करता है जिसमें संक्रियातमक प्रवर्धक के अप्रतिलोम इनपुट पर एक निम्न पारक आवृत्ति होती है। निस्पंदन का स्थानांतरण कार्य निम्नपारक द्वारा दिया जाता है:

जिसका एक ध्रुव -1/आरसी पर और एक शून्य 1/आरसी है वे जटिल तल के काल्पनिक अक्ष पर एक दूसरे के प्रतिबिंब हैं। कुछकोणीय आवृत्ति ω के लिए H(iω) का परिमाण और चरण है होता ।

निस्पंदन के लिए सभी इकाई लब्धि परिमाण है। निस्पंदन प्रत्येकआवृत्ति पर एक अलग विलंब का परिचय देता है और इनपुट-टू-आउटपुट क्वाडरेचर पर =1/RC पर पहुंचता है (अर्थात, फेज़ शिफ्ट 90° होता है)।[2]

यह कार्यान्वयन चरण बदलाव और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए अप्रतिलोम इनपुट पर निस्पंदन का उपयोग करता है।

  • उच्च आवृत्ति पर, संधारित्र एक शार्ट परिपथ है, जो एक क्रियाशील प्रवर्धक अनुप्रयोगों का निर्माण करता है एकता लाभ के साथ प्रवर्धक (यानी, 180 ° चरण शिफ्ट) को बनाता है।
  • कम आवृत्तियों और डीसी पर संधारित्र एक खुला परिपथ, होता है, जो क्रियाशील प्रवर्धक अनुप्रयोगों का निर्माण वोल्टेज अनुयायी द्वारा किया जाता है।
  • निम्न पारक आवृत्ति के कोण ω = 1 / आरसी पर (यानी, जब इनपुट आवृत्ति 1/(2πRC) है, परिपथ 90 डिग्री स्थानान्तरित करता है, इनपुट से एक चौथाई आवृत्ति द्वारा विलंबित होने के लिए, आउटपुट के साथ इनपुट मे चतुर्भुज; द्वारा प्रकट होता है

वास्तव में, समस्त पारक आवृत्ति की स्थिति को स्थानान्तरित करके अपने अप्रतिलोम इनपुट पर निम्न पारक आवृत्ति को दोगुना करता है।

एक शुद्ध देरी के लिए एक पद सन्निकटन के रूप में व्याख्या

शुद्ध विलंब का लाप्लास रूपांतरण किसके द्वारा दिया जाता है

जहां पे विलंब (सेकंड में) है और जटिल आवृत्ति है। यह एक Padé निकटता का उपयोग करके अनुमानित किया जा सकता है, जो इस प्रकार है:

जहां अंतिम चरण अंश और हर एक क्रम मे टेलर श्रृंखला के विस्तार के माध्यम से प्राप्त किया गया था। व्यवस्थित करके ऊपर से ठीक हो जाते हैं।

उच्च पारक निस्पंदन का उपयोग करके कार्यान्वयन

एक उच्च-पास निस्पंदन को शामिल करते हुए एक ऑप-एम्प बेस समस्त पारक निस्पंदन।

आसन्न आकृति में दिखाया गया क्रियाशील प्रवर्धक परिपथ एक एकध्रुवी निष्क्रियता समस्त पारक आवृत्ति को लागू करता है, जिसमें संक्रियातमक प्रवर्धक के अप्रतिलोम इनपुट पर एक उच्च पारक आवृत्ति होती है। निस्पंदन का स्थानांतरण फ़ंक्शन निम्न द्वारा दिया जाता है:

[2]

जिसका एक ध्रुव -1/आरसी पर और एक शून्य 1/आरसी पर है (अर्थात, वे जटिल तल के काल्पनिक अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ कोणीय आवृत्ति के लिए H(iω) का परिमाण और चरण होता हैं

निस्पंदन में सभी के लिए लाभ परिमाण होते है। निस्पंदन प्रत्येक आवृत्ति पर एक अलग विलंब का परिचय देता है और = 1/RC पर इनपुट-टू-आउटपुट क्वाडरेचर तक पहुंचता है (यानी, चरण लीड 90 डिग्री है)।

यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए क्रियाशील प्रवर्धक परिपथ संकेत पद्धति द्वारा गैर-इनवर्टिंग इनपुट पर एक उच्च-पारक निस्पंदन का उपयोग करता है।

  • उच्च आवृत्ति पर, संधारित्र एक अल्प परिपथ होता है, जिससे क्रियाशील प्रवर्धक अनुप्रयोग विद्युत संचालन शक्ति का निर्माण होता है।
  • कम आवृत्तियों और डीसी पर, संधारित्र एक खुला परिपथ है और परिपथ एक क्रियाशील प्रवर्धक अनुप्रयोग है जो लाभ के साथ प्रवर्धक (यानी, 180 डिग्री चरण लीड) को बदलना।
  • उच्च पारक के कोण आवृत्ति ω=1/RC पर (अर्थात, जब इनपुट आवृत्ति 1/(2πRC) होती है), परिपथ 90° फेज लीड का परिचय देता है (अर्थात, आउटपुट इनपुट के साथ चतुर्भुज में होता है; आउटपुट इनपुट से एक चौथाई आवृत्ति द्वारा उन्नत प्रतीत होता है)।

वास्तव में, समस्त पारक आवृत्ति का फेज विस्थापन अपने अप्रतिलोम इनपुट पर उच्च पारक आवृत्ति के फेज शिफ्ट से दोगुना होता है।

वोल्टेज नियंत्रित कार्यान्वयन

वोल्टेज-नियंत्रित चरण शिफ्टर को लागू करने के लिए प्रतिरोधी को अपने ओमिक मोड में क्षेत्र-प्रभाव ट्रांजिस्टर से बदला जा सकता है; गेट पर वोल्टेज चरण बदलाव को समायोजित करता है। इलेक्ट्रॉनिक संगीत में, इसके प्रभाव में सामान्यतः दो, चार या छह चरण-स्थानांतरण खंड होते हैं जो अग्रानुक्रम में जुड़े होते हैं और मूल के साथ अभिव्यक्त होते हैं। एक कम-आवृत्ति करने वाले दोलन विशेषता झपट्टा ध्वनि उत्पन्न करने के लिए नियंत्रण वोल्टेज को रैंप करता है।

निष्क्रिय अनुरूप कार्यान्वयन

परिचालन प्रवर्धक की तरह निष्क्रियता के साथ समस्त पारक आवृत्ति को लागू करने का लाभ यह है कि उन्हें प्रारंभ करनेवाले की आवश्यकता नहीं होती है, जो एकीकृत परिपथ डिजाइन में भारी और महंगे होते हैं। अन्य अनुप्रयोगों में जहां प्रेरक आसानी से उपलब्ध होते हैं,समस्त पारक आवृत्ति पूरी तरह से सक्रिय घटकों के बिना लागू किए जा सकते हैं। इसके लिए कई परिपथ संस्थितिविज्ञान इलेक्ट्रॉनिक्स का उपयोग किया जा सकता है। निम्नलिखित सबसे अधिक उपयोग किए जाने वाले परिपथ हैं।

जाली आवृत्ति

जाली सांस्थिति का उपयोग कर एक समस्त पारक निस्पंदन

जाली चरण तुल्यकारक, या निस्पंदन, या एक्स-सेक्शन से बना एक निस्पंदन है। एकल तत्व शाखाओं के साथ यह 180 ° तक एक चरण बदलाव का उत्पादन कर सकता है, और गुंजयमान शाखाओं के साथ यह 360 ° तक चरण बदलाव कर सकता है। निस्पंदन एक स्थिर-प्रतिरोध नेटवर्क का एक उदाहरण है (अर्थात, इसकी छवि प्रतिबाधा सभी आवृत्तियों पर स्थिर है)।

टी-सेक्शन निस्पंदन

टी सांस्थिति पर आधारित फेज इक्वलाइजर जाली आवृत्ति के असंतुलित समतुल्य है और इसकी फेज प्रतिक्रिया समान है। जबकि परिपथ आरेख दिख सकता है एक निम्न पारक आवृत्ति की तरह यह अलग है कि दो प्रारंभ करनेवाला शाखाएं परस्पर युग्मित हैं। इसके परिणामस्वरूप दो प्रेरक के बीच ट्रांसफॉर्मर कार्रवाई होती है और उच्च आवृत्ति पर भी एक समस्त पारक प्रतिक्रिया होती है।

ब्रिज टी-सेक्शन निस्पंदन

ब्रिज टी सांस्थिति का उपयोग विलंब समानता के लिए किया जाता है, विशेष रूप से स्टीरियोफोनिक ध्वनि प्रसारण के लिए उपयोग किए जा रहे दो लैंडलाइन के बीच अंतर विलंब होता है । इस अनुप्रयोग के लिए आवश्यक है कि निस्पंदन में व्यापक बैंडविड्थ पर आवृत्ति (यानी, निरंतर समूह विलंब ) के साथ एक रैखिक चरण प्रतिक्रिया हो और इस सांस्थिति को चुनने का कारण हो।

डिजिटल कार्यान्वयन

एक जटिल ध्रुव के साथ एक समस्त पारक निस्पंदन का एक जेड को बदलने के लिए कार्यान्वयन है

जिसका शून्य है , कहाँ पे जटिल संयुग्म को दर्शाता है। ध्रुव और शून्य एक ही कोण पर बैठते हैं लेकिन पारस्परिक परिमाण होते हैं (अर्थात, वे जटिल समतल इकाई वृत्त की सीमा के आर-पार एक दूसरे के प्रतिबिंब होते हैं)। किसी दिए गए के लिए इस ध्रुव-शून्य जोड़ी की नियुक्ति जटिल विमान में किसी भी कोण से घुमाया जा सकता है और इसकी सभी-पास परिमाण विशेषता को बनाए रखा जा सकता है। समस्त पारक आवृत्ति में जटिल पोल-शून्य जोड़े उस आवृत्ति को नियंत्रित करने में मदद करते हैं जहां चरण बदलाव होते हैं।

वास्तविक गुणांक के साथ एक समस्त पारक कार्यान्वयन बनाने के लिए, जटिल समस्त पारक निस्पंदन को एक समस्त पारक के साथ कैस्केड किया जा सकता है जो प्रतिस्थापित करता है के लिये , जेड-ट्रांसफॉर्म कार्यान्वयन के लिए अग्रणी

जो पुनरावृत्ति संबंध के बराबर है

जहां पे आउटपुट है और असतत समय चरण पर इनपुट है .

प्रणाली की परिमाण प्रतिक्रिया को बदले बिना एक स्थिर या न्यूनतम-चरण निस्पंदन बनाने के लिए उपरोक्त जैसे निस्पंदन को नियंत्रण सिद्धांत स्थिरता या मिश्रित-चरण निस्पंदन के साथ कैस्केड किया जा सकता है। उदाहरण के लिए, उचित चयन से , एक अस्थिर प्रणाली का एक ध्रुव जो यूनिट सर्कल के बाहर है, ये रद्द किया जा सकता है और यूनिट सर्कल के अंदर परिलक्षित हो सकता है।

यह भी देखें

संदर्भ

  1. Op Amps for Everyone, Ron Mancini, Newnes 780750677011
  2. Williams, A.B.; Taylor, F.J., Electronic Filter Design Handbook, McGraw-Hill, 1995 ISBN 0070704414, p. 10.7.


बाहरी संबंध