कोलमोगोरोव समष्टि
Separation axioms in topological spaces | |
---|---|
Kolmogorov classification | |
T0 | (Kolmogorov) |
T1 | (Fréchet) |
T2 | (Hausdorff) |
T2½ | (Urysohn) |
completely T2 | (completely Hausdorff) |
T3 | (regular Hausdorff) |
T3½ | (Tychonoff) |
T4 | (normal Hausdorff) |
T5 | (completely normal Hausdorff) |
T6 | (perfectly normal Hausdorff) |
सांस्थिति और गणित की संबंधित शाखाओं में,सांस्थितिक समष्टि X, T0 समष्टि या कोलमोगोरोव समष्टि (एंड्री कोलमोगोरोव के नाम पर) है, यदि X के प्रत्येक अलग-अलग बिंदुओं के युग्म के लिए, उनमें से कम से कम एक में नेबरहुड (गणित) है जिसमें दूसरा शामिल नहीं है। T0 समष्टि, सभी बिंदु सांस्थितिक रूप से भिन्न हैं।
इस स्थिति को T0 स्थिति कहा जाता है, पृथक्करण सिद्धांतों में सबसे दुर्बल है। गणित में आमतौर पर अध्ययन किए जाने वाले लगभग सभी सांस्थितिक समष्टि T0 हैं। विशेष रूप से, सभी T1 समष्टि, यानी, वे सभी समष्टि जिनमें प्रत्येक अलग-अलग बिंदुओं के युग्म के लिए पड़ोस होता है, जिसमें दूसरा शामिल नहीं होता है, T0 समष्टि होते हैं। इसमें सभी T2 (या हॉसडॉर्फ) समष्टि, यानी, सभी सांस्थितिक समष्टि जिनमें अलग-अलग बिंदुओं पर असंयुक्त पड़ोस होते हैं। दूसरी दिशा में, प्रत्येक संयमी समष्टि (जो कि टी नहीं हो सकता है1) T0 है; इसमें किसी भी पद्धति (गणित) का अंतर्निहित सांस्थितिक समष्टि शामिल है। किसी भी सांस्थितिक समष्टि को देखते हुए कोई T0 का निर्माण सांस्थितिक रूप से अविभाज्य बिंदुओं की पहचान करके समष्टि कर सकता है ।
T0 वे समष्टि जो T1 नहीं हैं समष्टि वास्तव में वे समष्टि हैं जिनके लिए विशेषीकरण प्रीऑर्डर गैर-तुच्छ आंशिक क्रम है। ऐसे रिक्त समष्टि स्वाभाविक रूप से कंप्यूटर विज्ञान विशेष रूप से सांकेतिक शब्दार्थ में होते हैं।
परिभाषा
पर0 समष्टि एक सांस्थितिक समष्टि है जिसमें अलग-अलग बिंदुओं का प्रत्येक जोड़ा सांस्थितिक रूप से भिन्न होता है। अर्थात्, किन्हीं दो अलग-अलग बिंदुओं x और y के लिए एक खुला सेट होता है जिसमें इनमें से एक बिंदु होता है और दूसरा नहीं। अधिक सटीक रूप से सांस्थितिक समष्टि X कोलमोगोरोव या है अगर और केवल अगर:[1]
- अगर और , वहाँ एक खुला सेट O मौजूद है जैसे कि या तो या .
ध्यान दें कि सांस्थितिक रूप से भिन्न बिंदु स्वचालित रूप से भिन्न होते हैं। दूसरी ओर, यदि सिंगलटन सेट {x} और {y} अलग-अलग सेट हैं तो बिंदु x और y को सांस्थितिक रूप से अलग होना चाहिए। वह है,
- पृथक ⇒ सांस्थितिक रूप से भिन्न ⇒ भिन्न
सांस्थितिक रूप से भिन्न होने की संपत्ति, सामान्य तौर पर, अलग होने की तुलना में अधिक मजबूत होती है लेकिन अलग होने की तुलना में दुर्बल होती है। एक टी में0 अंतरिक्ष, ऊपर दूसरा तीर भी उलट जाता है; बिंदु अलग-अलग हैं यदि और केवल तभी जब वे अलग-अलग हों। इस प्रकार टी0 स्वयंसिद्ध शेष पृथक्करण स्वयंसिद्धों के साथ फिट बैठता है।
उदाहरण और प्रति उदाहरण
गणित में आमतौर पर अध्ययन किए जाने वाले लगभग सभी सांस्थितिक समष्टि टी हैं0. विशेष रूप से, सभी हॉसडॉर्फ़ समष्टि|हॉसडॉर्फ़ (टी2) रिक्त समष्टि, T1 समष्टि|T1 रिक्त समष्टि और संयमीसमष्टि टी हैं0.
वे समष्टि जो T नहीं हैं0
- तुच्छ सांस्थिति के साथ एक से अधिक तत्वों वाला एक सेट। कोई भी बिंदु अलग नहीं है.
- सेट आर2 जहां खुले सेट आर और आर में ही एक खुले सेट के कार्टेशियन उत्पाद हैं, यानी, सामान्य सांस्थिति के साथ आर का उत्पाद सांस्थिति और तुच्छ सांस्थिति के साथ आर; अंक (ए,बी) और (ए,सी) अलग-अलग नहीं हैं।
- वास्तविक रेखा आर से जटिल विमान सी तक सभी मापने योग्य कार्यों एफ का समष्टि इस प्रकार है कि लेब्सग इंटीग्रल . दो कार्य जो लगभग हर जगह समान हैं, अप्रभेद्य हैं। नीचे भी देखें.
समष्टि जो T हैं0 लेकिन टी नहीं1
- स्पेक (आर) पर ज़ारिस्की सांस्थिति, एक क्रमविनिमेय रिंग आर का प्राइम स्पेक्ट्रम, हमेशा टी होता है0 लेकिन आम तौर पर टी नहीं1. गैर-बंद बिंदु अभाज्य आदर्शों के अनुरूप हैं जो अधिकतम आदर्श नहीं हैं। वे पद्धति (गणित) की समझ के लिए महत्वपूर्ण हैं।
- कम से कम दो तत्वों वाले किसी भी सेट पर विशेष बिंदु सांस्थिति टी है0 लेकिन टी नहीं1 चूंकि विशेष बिंदु बंद नहीं है (उसका बंद होना संपूर्ण समष्टि है)। एक महत्वपूर्ण विशेष मामला सिएरपिंस्की समष्टि है जो सेट {0,1} पर विशेष बिंदु सांस्थिति है।
- कम से कम दो तत्वों वाले किसी भी सेट पर बहिष्कृत बिंदु सांस्थिति टी है0 लेकिन टी नहीं1. एकमात्र बंद बिंदु बहिष्कृत बिंदु है।
- आंशिक रूप से ऑर्डर किए गए सेट पर अलेक्जेंडर सांस्थिति टी है0 लेकिन T नहीं होगा1 जब तक कि आदेश अलग न हो (समानता से सहमत हो)। प्रत्येक परिमित टी0 अंतरिक्ष इस प्रकार का है. इसमें विशेष मामलों के रूप में विशेष बिंदु और बहिष्कृत बिंदु सांस्थिति भी शामिल हैं।
- पूरी तरह से ऑर्डर किए गए सेट पर सही क्रम सांस्थिति एक संबंधित उदाहरण है।
- ओवरलैपिंग अंतराल सांस्थिति विशेष बिंदु सांस्थिति के समान है क्योंकि प्रत्येक गैर-रिक्त खुले सेट में 0 शामिल होता है।
- आम तौर पर, एक सांस्थितिक समष्टि X, T होगा0 यदि और केवल यदि X पर विशेषीकरण प्रीऑर्डर आंशिक ऑर्डर है। हालाँकि, X, T होगा1 यदि और केवल यदि आदेश असतत है (अर्थात समानता से सहमत है)। तो एक समष्टि T होगा0 लेकिन टी नहीं1 यदि और केवल यदि X पर विशेषीकरण प्रीऑर्डर एक गैर-अलग-अलग आंशिक ऑर्डर है।
टी के साथ संचालन0 रिक्त समष्टि
आमतौर पर अध्ययन किए जाने वाले सांस्थितिक समष्टि के उदाहरण टी हैं0. दरअसल, जब कई क्षेत्रों में गणितज्ञ, विशेष रूप से विश्लेषण (गणित) में, स्वाभाविक रूप से गैर-टी में भाग लेते हैं0 रिक्त समष्टि, वे आमतौर पर उन्हें टी से बदल देते हैं0 रिक्त समष्टि, नीचे वर्णित तरीके से। शामिल विचारों को प्रेरित करने के लिए, एक प्रसिद्ध उदाहरण पर विचार करें। समष्टि एलपी समष्टि|एल2(R) का तात्पर्य वास्तविक रेखा R से जटिल समतल C तक सभी मापनीय फलनों f का समष्टि है, जैसे कि |f(x का Lebesgue अभिन्न अंग ')|2संपूर्ण वास्तविक रेखा पर परिमित समुच्चय है। यह समष्टि मानक ||f| को परिभाषित करके एक मानक वेक्टर समष्टि बन जाना चाहिए उस अभिन्न का. समस्या यह है कि यह वास्तव में एक मानक नहीं है, केवल एक सेमिनोर्म है, क्योंकि शून्य फ़ंक्शन के अलावा अन्य फ़ंक्शन भी हैं जिनके (अर्ध)मानदंड 0 (संख्या) हैं। मानक समाधान एल को परिभाषित करना है2(R) सीधे कार्यों के एक सेट के बजाय कार्यों के समतुल्य वर्गों का एक सेट होना। यह मूल सेमीनॉर्मड वेक्टर समष्टि के एक भागफल समष्टि (सांस्थिति) का निर्माण करता है, और यह भागफल एक मानकीकृत वेक्टर समष्टि है। इसे सेमीनोर्म्ड समष्टि से कई सुविधाजनक गुण विरासत में मिले हैं; नीचे देखें।
सामान्य तौर पर, एक सेट X पर एक निश्चित सांस्थिति टी के साथ काम करते समय, यह सहायक होता है यदि वह सांस्थिति टी है0. दूसरी ओर, जब0 असुविधाजनक हो सकता है, क्योंकि गैर-टी0 सांस्थिति अक्सर महत्वपूर्ण विशेष मामले होते हैं। इस प्रकार, दोनों टी को समझना महत्वपूर्ण हो सकता है0 और गैर-टी0 विभिन्न स्थितियों के संस्करण जिन्हें सांस्थितिक समष्टि पर रखा जा सकता है।
कोलमोगोरोव भागफल
बिंदुओं की सांस्थितिक अविभाज्यता एक तुल्यता संबंध है। इससे कोई फर्क नहीं पड़ता कि सांस्थितिक समष्टि X किससे शुरू हो सकता है, इस तुल्यता संबंध के तहत कोटिएंट समष्टि (सांस्थिति) हमेशा टी होता है0. इस भागफल समष्टि को X का कोलमोगोरोव भागफल कहा जाता है, जिसे हम KQ(X) निरूपित करेंगे। निःसंदेह, यदि X T होता0 आरंभ करने के लिए, KQ(X) और X प्राकृतिक (श्रेणी सिद्धांत) पूरी तरह से होम्योमॉर्फिक हैं। स्पष्ट रूप से, कोलमोगोरोव रिक्त समष्टि सांस्थितिक रिक्त समष्टि की एक परावर्तक उपश्रेणी है, और कोलमोगोरोव भागफल परावर्तक है।
सांस्थितिक समष्टि X और वाई 'कोलमोगोरोव समतुल्य' हैं जब उनके कोलमोगोरोव भागफल होमियोमोर्फिक होते हैं। सांस्थितिक समष्टि के कई गुण इस तुल्यता द्वारा संरक्षित हैं; अर्थात्, यदि X और Y कोलमोगोरोव समकक्ष हैं, तो X के पास ऐसी संपत्ति है यदि और केवल यदि Y के पास है। दूसरी ओर, सांस्थितिक समष्टि के अधिकांश अन्य गुण टी दर्शाते हैं0-नेस; अर्थात्, यदि X के पास ऐसी कोई संपत्ति है, तो X को T होना चाहिए0. केवल कुछ गुण, जैसे कि एक अविभाज्य समष्टि, इस नियम के अपवाद हैं। इससे भी बेहतर, सांस्थितिक समष्टि पर परिभाषित कई संरचनाएं (गणित) X और केक्यू (X) के बीच स्थानांतरित की जा सकती हैं। परिणाम यह है कि, यदि आपके पास गैर-टी है0 एक निश्चित संरचना या संपत्ति के साथ सांस्थितिक समष्टि, तो आप आमतौर पर एक टी बना सकते हैं0 कोलमोगोरोव भागफल लेकर समान संरचनाओं और गुणों वाला समष्टि।
एल का उदाहरण2(R) इन सुविधाओं को प्रदर्शित करता है। सांस्थिति के दृष्टिकोण से, जिस सेमीनॉर्म्ड सदिश स्थल से हमने शुरुआत की थी, उसमें बहुत अधिक अतिरिक्त संरचना है; उदाहरण के लिए, यह एक वेक्टर समष्टि है, और इसमें एक सेमिनॉर्म है, और ये एक स्यूडोमेट्रिक समष्टि और एक समान संरचना को परिभाषित करते हैं जो सांस्थिति के साथ संगत हैं। इसके अलावा, इन संरचनाओं के कई गुण हैं; उदाहरण के लिए, सेमिनॉर्म समांतर चतुर्भुज पहचान को संतुष्ट करता है और समान संरचना पूर्ण समष्टि है। समष्टि T नहीं है0 चूँकि L में कोई दो कार्य हैं2(R) जो लगभग हर जगह समान हैं, इस सांस्थिति से अप्रभेद्य हैं। जब हम कोलमोगोरोव भागफल बनाते हैं, तो वास्तविक एल2(R), ये संरचनाएं और संपत्तियां संरक्षित हैं। इस प्रकार, एल2(R) भी समांतर चतुर्भुज पहचान को संतुष्ट करने वाला एक पूर्ण अर्ध-मानदंड सदिश समष्टि है। लेकिन वास्तव में हमें कुछ अधिक मिलता है, क्योंकि समष्टि अब टी है0. एक सेमिनोर्म एक आदर्श है यदि और केवल यदि अंतर्निहित सांस्थिति टी है0, तो एल2(R) वास्तव में समांतर चतुर्भुज पहचान को संतुष्ट करने वाला एक पूर्ण मानक वेक्टर समष्टि है - जिसे हिल्बर्ट समष्टि के रूप में जाना जाता है। और यह एक हिल्बर्ट समष्टि है जिसका गणितज्ञ (और क्वांटम यांत्रिकी में भौतिक विज्ञानी) आम तौर पर अध्ययन करना चाहते हैं। ध्यान दें कि संकेतन एल2(आर) आम तौर पर कोलमोगोरोव भागफल को दर्शाता है, वर्ग पूर्णांक कार्यों के समतुल्य वर्गों का सेट जो कि माप शून्य के सेट पर भिन्न होता है, न कि केवल वर्ग पूर्णांक कार्यों के वेक्टर समष्टि के बजाय जो नोटेशन सुझाता है।
टी हटाना0
हालाँकि मानदंडों को ऐतिहासिक रूप से सबसे पहले परिभाषित किया गया था, लोग सेमीनॉर्म की परिभाषा के साथ भी आए, जो एक प्रकार का गैर-टी है0 एक आदर्श का संस्करण. सामान्य तौर पर, गैर-टी को परिभाषित करना संभव है0 सांस्थितिक समष्टि के गुणों और संरचनाओं दोनों के संस्करण। सबसे पहले, सांस्थितिक समष्टि की एक संपत्ति पर विचार करें, जैसे हॉसडॉर्फ़ समष्टि इसके बाद कोई संपत्ति को संतुष्ट करने के लिए समष्टि X को परिभाषित करके सांस्थितिक समष्टि की एक और संपत्ति को परिभाषित कर सकता है यदि कोलमोगोरोव भागफल केक्यू (X) हॉसडॉर्फ है। यह एक समझदार, यद्यपि कम प्रसिद्ध संपत्ति है; इस स्थिति में, ऐसे समष्टि X को पूर्व नियमित समष्टि कहा जाता है। (वहाँ पूर्व-नियमितता की एक अधिक प्रत्यक्ष परिभाषा भी सामने आती है)। अब एक ऐसी संरचना पर विचार करें जिसे सांस्थितिक समष्टि पर रखा जा सकता है, जैसे कि मीट्रिक समष्टि। हम X पर संरचना का एक उदाहरण केवल केक्यू (X) पर एक मीट्रिक देकर सांस्थितिक रिक्त समष्टि पर एक नई संरचना को परिभाषित कर सकते हैं। यह X पर एक समझदार संरचना है; यह एक स्यूडो मीट्रिक समष्टि है। (फिर से, स्यूडोमेट्रिक की एक अधिक प्रत्यक्ष परिभाषा है।)
इस तरह टी को दूर करने का एक प्राकृतिक तरीका है0-किसी संपत्ति या संरचना के लिए आवश्यकताओं से। आमतौर पर उन स्थानों का अध्ययन करना आसान होता है जो टी हैं0, लेकिन उन संरचनाओं को अनुमति देना भी आसान हो सकता है जो टी नहीं हैं0 एक संपूर्ण चित्र प्राप्त करने के लिए. टी0 कोलमोगोरोव भागफल की अवधारणा का उपयोग करके आवश्यकता को मनमाने ढंग से जोड़ा या हटाया जा सकता है।
यह भी देखें
- संयमीसमष्टि
संदर्भ
- ↑ Steenrod 1991, pp. 11.
- Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology. Springer-Verlag, New York, 1978. Reprinted by Dover Publications, New York, 1995. ISBN 0-486-68735-X (Dover edition).