मॉड्यूलर वक्र

From Vigyanwiki

संख्या सिद्धांत और बीजगणितीय ज्यामिति में, मॉड्यूलर वक्र Y(Γ) रीमैन सतह, या संबंधित बीजगणितीय वक्र है, जो मॉड्यूलर समूह समूह के सर्वांगसम उपसमूह Γ की क्रिया द्वारा जटिल ऊपरी आधे-तल H के समूह क्रिया द्वारा भागफल के रूप में निर्मित होता है। इंटीग्रल 2×2 मैट्रिक्स एसएल(2, Z)। मॉड्यूलर वक्र शब्द का उपयोग कॉम्पैक्टिफाइड मॉड्यूलर वक्रों को संदर्भित करने के लिए भी किया जा सकता है -X(Γ) जो कि इस भागफल में (विस्तारित जटिल ऊपरी-आधे तल पर क्रिया के माध्यम से) बहुत सारे बिंदु (जिसे Γ के क्यूप्स कहा जाता है) जोड़कर प्राप्त किए गए संघनन (गणित) हैं। मॉड्यूलर वक्र के बिंदु समूह Γ के आधार पर कुछ अतिरिक्त संरचना के साथ,अण्डाकार वक्रों के समरूपता वर्गों को पैरामीट्रिज करते हैं। यह व्याख्या किसी को जटिल संख्याओं के संदर्भ के बिना, मॉड्यूलर वक्रों की विशुद्ध रूप से बीजगणितीय परिभाषा देने की अनुमति देती है, और इसके अलावा, यह साबित करती है कि मॉड्यूलर वक्र या तो तर्कसंगत संख्या Q के क्षेत्र या साइक्लोटोमिक क्षेत्र Qn) पर परिभाषित होते हैं। बाद वाला तथ्य और इसके सामान्यीकरण संख्या सिद्धांत में मौलिक महत्व के हैं।

विश्लेषणात्मक परिभाषा

मॉड्यूलर समूह एसएल (2, Z) आंशिक रैखिक परिवर्तनों द्वारा ऊपरी आधे तल पर कार्य करता है। मॉड्यूलर वक्र की विश्लेषणात्मक परिभाषा में एसएल(2, Z) के सर्वांगसम उपसमूह Γ का विकल्प शामिल होता है, यानी उपसमूह जिसमें कुछ सकारात्मक पूर्णांक N के लिए स्तर N Γ(N) का प्रमुख सर्वांगसम उपसमूह होता है, जहां

ऐसे न्यूनतम N को Γ का स्तर कहा जाता है। गैर सघन रीमैन सतह जिसे आमतौर पर Y(Γ) कहा जाता है, प्राप्त करने के लिए भागफल Γ\H पर जटिल संरचना डाली जा सकती है।

संहतित मॉड्यूलर वक्र

Y(Γ) का सामान्य संघनन बहुत सारे बिंदुओं को जोड़कर प्राप्त किया जाता है जिन्हें Γ के क्यूप्स कहा जाता है। विशेष रूप से, यह विस्तारित जटिल ऊपरी-आधे विमान H* = HQ ∪ {∞}. पर Γ की क्रिया पर विचार करके किया जाता है। हम आधार के रूप में H* पर टोपोलॉजी प्रस्तुत करते हैं:

  • H का कोई भी खुला उपसमुच्चय,
  • सभी r > 0 के लिए, सेट
  • सभी सहअभाज्य पूर्णांक a, c और सभी r > 0 के लिए, की क्रिया के तहत की छवि
जहाँ m, n ऐसे पूर्णांक हैं कि a + सेमी = 1.

यह H* को टोपोलॉजिकल स्पेस में बदल देता है जो रीमैन क्षेत्र P1(C) का उपसमुच्चय है। समूह Γ उपसमुच्चय Q ∪ {∞} पर कार्य करता है, इसे परिमित रूप से कई कक्षाओं में विभाजित करता है जिन्हें Γ का पुच्छल कहा जाता है। यदि Γ Q ∪ {∞} पर सकर्मक रूप से कार्य करता है, तो स्थान Γ\H* Γ\H का अलेक्जेंड्रॉफ़ संघनन बन जाता है। बार फिर, जटिल संरचना को भागफल Γ\H* पर रखा जा सकता है, जिससे इसे X(Γ) नामक रीमैन सतह में बदल दिया जा सकता है, जो अब कॉम्पैक्ट है। यह स्थान Y(Γ) का संघनन है।[1]

उदाहरण

सबसे सामान्य उदाहरण उपसमूह Γ(N), Γ0(N), और Γ1(N) से जुड़े वक्र X(N), X0(N), और X1(N) हैं।

मॉड्यूलर वक्र कवरिंग X(5) → X(1) को रीमैन क्षेत्र पर विंशतिफलक समरूपता की क्रिया द्वारा महसूस किया जाता है। यह समूह A से 60 समरूपी क्रम का सरल समूह है5 और पीएसएल(2,5).

मॉड्यूलर वक्र X(7) 24 क्यूप्स के साथ जीनस 3 का क्लेन चतुर्थक है। इसे 24 हेप्टागोन्स द्वारा टाइल किए गए तीन हैंडल वाली सतह के रूप में समझा जा सकता है, जिसमें प्रत्येक चेहरे के केंद्र में पुच्छ होता है। इन टाइलिंग को डेसिन्स डी एनफैंट्स और बेली समारोह के माध्यम से समझा जा सकता है - क्यूप्स ∞ (लाल बिंदु) के ऊपर स्थित बिंदु हैं, जबकि किनारों के शीर्ष और केंद्र (काले और सफेद बिंदु) 0 और 1 के ऊपर स्थित बिंदु हैं। कवरिंग X(7) → X(1) का गैलोज़ समूह पीएसएल(2,7)|पीएसएल(2,7) के क्रम 168 समरूपी का सरल समूह है।

एक्स के लिए स्पष्ट शास्त्रीय मॉडल है0(एन), शास्त्रीय मॉड्यूलर वक्र; इसे कभी-कभी मॉड्यूलर वक्र भी कहा जाता है। Γ(N) की परिभाषा को इस प्रकार दोहराया जा सकता है: यह मॉड्यूलर समूह का उपसमूह है जो कमी मॉड्यूलर अंकगणित एन का कर्नेल है। फिर Γ0(एन) मैट्रिक्स का बड़ा उपसमूह है जो ऊपरी त्रिकोणीय मॉड्यूलो एन है:

और Γ1(एन) मध्यवर्ती समूह है जिसे निम्न द्वारा परिभाषित किया गया है:

इन वक्रों की समतल संरचना (बीजगणितीय ज्यामिति) के साथ अण्डाकार वक्रों के लिए मॉड्यूलि रिक्त स्थान के रूप में सीधी व्याख्या होती है और इस कारण से वे अंकगणितीय ज्यामिति में महत्वपूर्ण भूमिका निभाते हैं। स्तर एन मॉड्यूलर वक्र एक्स(एन) एन-टोरसन (बीजगणित) के आधार के साथ अण्डाकार वक्रों के लिए मॉड्यूलि स्थान है। एक्स के लिए0(एन) और एक्स1(एन), स्तर संरचना क्रमशः क्रम एन का चक्रीय उपसमूह और क्रम एन का बिंदु है। इन वक्रों का बहुत विस्तार से अध्ययन किया गया है, और विशेष रूप से, यह ज्ञात है कि एक्स0(एन) को 'क्यू' पर परिभाषित किया जा सकता है।

मॉड्यूलर वक्रों को परिभाषित करने वाले समीकरण मॉड्यूलर समीकरणों के सबसे प्रसिद्ध उदाहरण हैं। सर्वोत्तम मॉडल सीधे अण्डाकार फ़ंक्शन सिद्धांत से लिए गए मॉडल से बहुत भिन्न हो सकते हैं। बचाव संचालक का अध्ययन ज्यामितीय रूप से किया जा सकता है, जैसे कि मॉड्यूलर वक्रों के जोड़े को जोड़ने वाला पत्राचार (बीजगणितीय ज्यामिति)

'टिप्पणी': 'एच' के भागफल जो संहत हैं, मॉड्यूलर समूह के उपसमूहों के अलावा फुच्सियन समूहों Γ के लिए भी होते हैं; चतुर्भुज बीजगणित से निर्मित उनमें से वर्ग भी संख्या सिद्धांत में रुचि रखता है।

जाति

कवरिंग X(N) → X(1) गैलोज़ है, गैलोज़ समूह एसएल(2, N)/{1, −1} के साथ, जो पीएसएल(2,N) के बराबर है यदि N अभाज्य है। रीमैन-हर्विट्ज़ फॉर्मूला और गॉस-बोनट प्रमेय को लागू करके, कोई एक्स (एन) के जीनस की गणना कर सकता है। अभाज्य संख्या स्तर p ≥ 5 के लिए,

जहां χ = 2 − 2g यूलर विशेषता है, |G| = (p+1)p(p−1)/2 समूह पीएसएल(2, p) का क्रम है, और D = π - π/2 - π/3 - π/p का दोष (ज्यामिति) है गोलाकार (2,3,पी) त्रिकोण. इससे सूत्र तैयार होता है

इस प्रकार X(5) का जीनस 0 है, X(7) का जीनस 3 है, और पीएसएल (2, 'जेड') में तत्व, और तथ्य यह है कि पीएसएल (2, 2) में 3 के बजाय क्रम 6 है। किसी भी स्तर एन के मॉड्यूलर वक्र एक्स (एन) के जीनस के लिए अधिक जटिल सूत्र है इसमें N के विभाजक शामिल हैं।

जीनस शून्य

सामान्य तौर पर मॉड्यूलर फ़ंक्शन फ़ील्ड मॉड्यूलर वक्र की बीजगणितीय विविधता का फ़ंक्शन फ़ील्ड होता है (या, कभी-कभी, कुछ अन्य मॉड्यूलि स्पेस जो अपरिवर्तनीय विविधता बन जाता है)। जीनस (गणित) शून्य का अर्थ है कि ऐसे फ़ंक्शन फ़ील्ड में जनरेटर के रूप में एकल पारलौकिक कार्य होता है: उदाहरण के लिए जे-अपरिवर्तनीय|j-फ़ंक्शन X(1) = पीएसएल(2, Z)\H का फ़ंक्शन फ़ील्ड उत्पन्न करता है *. ऐसे जनरेटर का पारंपरिक नाम, जो मोबियस परिवर्तन के लिए अद्वितीय है और उचित रूप से सामान्यीकृत किया जा सकता है, हौप्टमोडुल (मुख्य या प्रमुख मॉड्यूलर फ़ंक्शन, बहुवचन हौप्टमोडुलन) है।

रिक्त स्थान X1(एन) में एन = 1, ..., 10 और एन = 12 के लिए जीनस शून्य है। चूंकि इनमें से प्रत्येक वक्र को 'क्यू' पर परिभाषित किया गया है और इसमें 'क्यू'-तर्कसंगत बिंदु है, यह इस प्रकार है कि अनंत रूप से कई तर्कसंगत हैं ऐसे प्रत्येक वक्र पर बिंदु, और इसलिए n के इन मानों के लिए n-मरोड़ के साथ 'Q' पर अनंत रूप से कई अण्डाकार वक्र परिभाषित होते हैं। विपरीत कथन, कि केवल n के ये मान ही घटित हो सकते हैं, मजूर का मरोड़ प्रमेय है।

एक्स0(एन) जीनस का

मॉड्यूलर वक्र जीनस के हैं यदि और केवल यदि निम्न तालिका में सूचीबद्ध 12 मानों में से के बराबर है।[2] जैसे कि अण्डाकार वक्र खत्म हो जाता है , उनके पास न्यूनतम, अभिन्न वीयरस्ट्रैस मॉडल हैं . यह है, और विवेचक का पूर्ण मूल्य समान वक्र के लिए सभी इंटीग्रल वीयरस्ट्रैस मॉडलों में न्यूनतम है। निम्नलिखित तालिका में अद्वितीय कम, न्यूनतम, अभिन्न वीयरस्ट्रैस मॉडल शामिल हैं, जिसका अर्थ है और .[3] इस तालिका का अंतिम स्तंभ संबंधित अण्डाकार मॉड्यूलर वक्र के मुख पृष्ठ को संदर्भित करता है एल-फ़ंक्शंस और मॉड्यूलर फॉर्म डेटाबेस (एलएमएफडीबी) पर।

of genus 1
LMFDB
11 [0, -1, 1, -10, -20] link
14 [1, 0, 1, 4, -6] link
15 [1, 1, 1, -10, -10] link
17 [1, -1, 1, -1, -14] link
19 [0, 1, 1, -9, -15] link
20 [0, 1, 0, 4, 4] link
21 [1, 0, 0, -4, -1] link
24 [0, -1, 0, -4, 4] link
27 [0, 0, 1, 0, -7] link
32 [0, 0, 0, 4, 0] link
36 [0, 0, 0, 0, 1] link
49 [1, -1, 0, -2, -1] link


राक्षस समूह से संबंध

जीनस 0 के मॉड्यूलर वक्र, जो काफी दुर्लभ हैं, राक्षसी चांदनी अनुमानों के संबंध में प्रमुख महत्व के साबित हुए। उनके Hauptmoduln के q-विस्तार के पहले कई गुणांकों की गणना 19वीं शताब्दी में ही की गई थी, लेकिन यह झटके के रूप में आया कि वही बड़े पूर्णांक सबसे बड़े छिटपुट सरल समूह मॉन्स्टर के प्रतिनिधित्व के आयाम के रूप में दिखाई देते हैं।

एक अन्य कनेक्शन यह है कि नॉर्मलाइज़र Γ के अनुरूप मॉड्यूलर वक्र0(पी)मॉड्यूलर समूह Gamma0|Γ का +0(पी) एसएल (2, 'आर') में जीनस शून्य है यदि और केवल यदि पी 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 या 71 है , और ये बिल्कुल राक्षस समूह के क्रम के प्रमुख कारक हैं। Γ के बारे में परिणाम0(पी)+ 1970 के दशक में जीन पियरे सेरे , एंड्रयू ऑग और जॉन जी. थॉम्पसन के कारण है, और इसके बाद राक्षस समूह से संबंधित अवलोकन ऑग के कारण है, जिन्होंने जैक डेनियल की बोतल की पेशकश करते हुए पेपर लिखा था। व्हिस्की किसी को भी जो इस तथ्य को समझा सकता है, जो राक्षसी चांदनी के सिद्धांत के लिए प्रारंभिक बिंदु था।[4] यह संबंध बहुत गहरा है और, जैसा कि रिचर्ड बोरचर्ड्स द्वारा प्रदर्शित किया गया है, इसमें सामान्यीकृत केएसी-मूडी बीजगणित भी शामिल है। इस क्षेत्र में काम ने मॉड्यूलर फ़ंक्शन के महत्व को रेखांकित किया जो कि मेरोमोर्फिक हैं और क्यूप्स पर ध्रुव हो सकते हैं, मॉड्यूलर फॉर्म के विपरीत, जो कि क्यूप्स सहित हर जगह होलोमोर्फिक हैं, और बेहतर हिस्से के लिए अध्ययन की मुख्य वस्तुएं थीं। 20 वीं सदी।

यह भी देखें

संदर्भ

  1. Serre, Jean-Pierre (1977), Cours d'arithmétique, Le Mathématicien, vol. 2 (2nd ed.), Presses Universitaires de France
  2. Birch, Bryan; Kuyk, Willem, eds. (1975). एक चर IV के मॉड्यूलर कार्य. Lecture Notes in Mathematics. Vol. 476. Berlin, Heidelberg: Springer-Verlag. p. 79. ISBN 3-540-07392-2.
  3. Ligozat, Gerard (1975). "लिंग 1 मॉड्यूलर वक्र" (PDF). Bulletin de la Société Mathématique de France. 43: 44–45. Retrieved 2022-11-06.
  4. Ogg (1974)