लेवी-सिविटा कनेक्शन
रीमैनियन कई गुना या [[छद्म-रीमैनियन मैनिफोल्ड]] (विशेष रूप से सामान्य सापेक्षता के लोरेंट्ज़ियन मैनिफोल्ड) में, लेवी-सिविटा कनेक्शन मैनिफोल्ड (यानी एफ़िन कनेक्शन) के स्पर्शरेखा बंडल पर अद्वितीय एफ़िन कनेक्शन है जो मीट्रिक कनेक्शन (छद्म-रीमैनियन मैनिफोल्ड) |छद्म-)रीमैनियन मीट्रिक और मरोड़ (विभेदक ज्यामिति)-मुक्त है।
रीमैनियन ज्यामिति के मौलिक प्रमेय में कहा गया है कि एक अनूठा संबंध है जो इन गुणों को संतुष्ट करता है।
रीमैनियन मैनिफोल्ड और छद्म-रीमैनियन मैनिफोल्ड के सिद्धांत में सहसंयोजक व्युत्पन्न शब्द का प्रयोग अक्सर लेवी-सिविटा कनेक्शन के लिए किया जाता है। स्थानीय निर्देशांक की प्रणाली के संबंध में इस कनेक्शन के घटकों (संरचना गुणांक) को क्रिस्टोफ़ेल प्रतीक कहा जाता है।
इतिहास
लेवी-सिविटा कनेक्शन का नाम टुल्लियो लेवी-सिविटा के नाम पर रखा गया है, हालांकि मूल रूप से इसकी खोज एल्विन ब्रूनो क्रिस्टोफर ने की थी। लेवी-सिविटा,[1] ग्रेगोरियो रिक्की-कर्बस्ट्रो के साथ, क्रिस्टोफ़ेल प्रतीकों का उपयोग किया[2] समानांतर परिवहन की धारणा को परिभाषित करना और रीमैन वक्रता टेंसर के साथ समानांतर परिवहन के संबंध का पता लगाना, इस प्रकार होलोनोमी की आधुनिक धारणा विकसित करना।[3] 1869 में, क्रिस्टोफ़ेल ने पाया कि एक वेक्टर क्षेत्र के आंतरिक व्युत्पन्न के घटक, समन्वय प्रणाली को बदलने पर, एक कॉन्ट्रावेरिएंट वेक्टर के घटकों के रूप में बदल जाते हैं। यह खोज टेंसर विश्लेषण की वास्तविक शुरुआत थी।
1906 में, एल. ई. जे. ब्रौवर पहले गणितज्ञ थे जिन्होंने यूक्लिडियन वेक्टर के मामले के लिए समानांतर परिवहन पर विचार किया था निरंतर वक्रता का एक स्थान।[4][5] 1917 में, लेवी के Civita ने यूक्लिडियन अंतरिक्ष में डूबे हुए ऊनविम पृष्ठ के मामले में, यानी, एक बड़े परिवेश स्थान में एम्बेडेड रीमैनियन मैनिफोल्ड के मामले में इसके महत्व को बताया।[1]उन्होंने एम्बेडेड सतह के मामले में आंतरिक व्युत्पन्न की व्याख्या परिवेशीय एफ़िन स्पेस में सामान्य व्युत्पन्न के स्पर्शरेखा घटक के रूप में की। एक वक्र के साथ एक वेक्टर के आंतरिक व्युत्पन्न और समानांतर विस्थापन की लेवी-सिविटा धारणाएं एक अमूर्त रीमैनियन मैनिफोल्ड पर समझ में आती हैं, भले ही मूल प्रेरणा एक विशिष्ट एम्बेडिंग पर निर्भर थी 1918 में, लेवी-सिविटा से स्वतंत्र रूप से, जान अर्नोल्ड स्काउटन ने समान परिणाम प्राप्त किए।[6] उसी वर्ष, हरमन वेइल ने सामान्यीकरण किया लेवी-सिविटा के परिणाम।[7][8]
नोटेशन
- (M, g) एक रीमैनियन मैनिफोल्ड या छद्म-रिमैनियन मैनिफोल्ड को दर्शाता है।
- TM का स्पर्शरेखा बंडल है M.
- g रीमैनियन मीट्रिक या छद्म-रीमैनियन मीट्रिक है M.
- X, Y, Z चिकनी वेक्टर फ़ील्ड पर हैं M, मैं। इ। का चिकना खंड (फाइबर बंडल)। TM.
- [X, Y] के सदिश क्षेत्रों का झूठ ब्रैकेट है X और Y. यह फिर से एक सहज वेक्टर क्षेत्र है।
मीट्रिक g अधिकतम दो सदिश या सदिश फ़ील्ड ले सकता है X, Yतर्क के रूप में। पहले मामले में आउटपुट एक संख्या है, (छद्म-)आंतरिक उत्पाद X और Y. बाद वाले मामले में, का आंतरिक उत्पाद Xp, Yp सभी बिंदुओं पर लिया जाता है p मैनिफोल्ड पर ताकि g(X, Y) एक सुचारू कार्य को परिभाषित करता है M. वेक्टर फ़ील्ड सुचारू कार्यों पर अंतर ऑपरेटर के रूप में कार्य करते हैं (परिभाषा के अनुसार)। स्थानीय निर्देशांक में , क्रिया पढ़ती है
जहां अल्बर्ट आइंस्टीन|आइंस्टीन के आइंस्टीन सारांश सम्मेलन का उपयोग किया जाता है।
औपचारिक परिभाषा
एक एफ़िन कनेक्शन ∇ को लेवी-सिविटा कनेक्शन कहा जाता है यदि
- यह मीट्रिक को सुरक्षित रखता है, अर्थात, ∇g = 0.
- यह कनेक्शन-मुक्त का मरोड़ है, अर्थात, किसी भी वेक्टर फ़ील्ड के लिए X और Y अपने पास ∇XY − ∇YX = [X, Y], कहाँ [X, Y] सदिश क्षेत्रों के सदिश क्षेत्रों का झूठ ब्रैकेट है X और Y.
उपरोक्त स्थिति 1 को कभी-कभी मीट्रिक के साथ संगतता के रूप में जाना जाता है, और स्थिति 2 को कभी-कभी समरूपता कहा जाता है, सीएफ। कार्मो का पाठ करें.[9]
(छद्म) रीमैनियन ज्यामिति का मौलिक प्रमेय
प्रमेय प्रत्येक छद्म रीमैनियन मैनिफोल्ड एक अनोखा लेवी सिविटा कनेक्शन है .
सबूत: यदि लेवी-सिविटा कनेक्शन मौजूद है, तो यह अद्वितीय होना चाहिए। इसे देखने के लिए क्रिया की परिभाषा को उजागर करें खोजने के लिए टेंसर पर एक कनेक्शन
इसलिए हम शर्त 1 को इस प्रकार लिख सकते हैं
- मीट्रिक टेंसर की समरूपता द्वारा फिर हम पाते हैं:
शर्त 2 के अनुसार, दाहिना हाथ इसलिए बराबर है
और हमें जीन-लुई कोस्ज़ुल सूत्र मिलता है
इसलिए, यदि लेवी-सिविटा कनेक्शन मौजूद है, तो यह अद्वितीय होना चाहिए, क्योंकि मनमाना है, गैर पतित है, और दाहिने हाथ पर निर्भर नहीं है .
अस्तित्व को साबित करने के लिए, दिए गए वेक्टर क्षेत्र के लिए ध्यान दें और , कोस्ज़ुल अभिव्यक्ति का दाहिना हाथ वेक्टर क्षेत्र में फ़ंक्शन-रैखिक है , सिर्फ वास्तविक रैखिक नहीं। अत: के गैर अध:पतन द्वारा , दाहिना हाथ विशिष्ट रूप से कुछ नए वेक्टर फ़ील्ड को परिभाषित करता है जिसे हम सुझावात्मक रूप से निरूपित करते हैं जैसे बायीं ओर. कोसज़ुल सूत्र को प्रतिस्थापित करके, अब सभी वेक्टर फ़ील्ड के लिए इसकी जाँच की जाती है , और सभी कार्य
इसलिए कोसज़ुल अभिव्यक्ति, वास्तव में, एक कनेक्शन को परिभाषित करती है, और यह कनेक्शन मीट्रिक के साथ संगत है और मरोड़ मुक्त है, यानी एक (इसलिए) लेवी-सिविटा कनेक्शन है।
ध्यान दें कि मामूली बदलावों के साथ एक ही प्रमाण दिखाता है कि एक अद्वितीय कनेक्शन है जो मीट्रिक के साथ संगत है और इसमें मरोड़ निर्धारित है।
क्रिस्टोफर प्रतीक
कृपया ध्यान स्पर्शरेखा बंडल पर एक एफ़िन कनेक्शन बनें। स्थानीय निर्देशांक चुनें समन्वय आधार वेक्टर फ़ील्ड के साथ और लिखा के लिए . क्रिस्टोफ़ेल प्रतीक का इन निर्देशांकों के संबंध में परिभाषित किया गया है
क्रिस्टोफ़ेल प्रतीक इसके विपरीत संबंध को परिभाषित करते हैं समन्वित पड़ोस पर क्योंकि
वह है,
एक एफ़िन कनेक्शन एक मीट्रिक आईएफएफ के साथ संगत है
यानी, यदि और केवल यदि
एक एफ़िन कनेक्शन ∇ मरोड़ मुक्त है iff
यानी, यदि और केवल यदि
इसके निचले दो सूचकांकों में सममित है।
जैसे कोई ले-लेकर जांच करता है , सदिश क्षेत्रों का समन्वय करें (या सीधे गणना करता है), ऊपर प्राप्त लेवी-सिविटा कनेक्शन की कोसज़ुल अभिव्यक्ति मीट्रिक के संदर्भ में क्रिस्टोफ़ेल प्रतीकों की परिभाषा के बराबर है
जहां हमेशा की तरह दोहरे मीट्रिक टेंसर के गुणांक हैं, यानी मैट्रिक्स के व्युत्क्रम की प्रविष्टियाँ .
वक्र के अनुदिश व्युत्पन्न
लेवी-सिविटा कनेक्शन (किसी भी एफ़िन कनेक्शन की तरह) भी वक्रों के साथ व्युत्पन्न को परिभाषित करता है, जिसे कभी-कभी इसके द्वारा दर्शाया जाता है D.
एक सहज वक्र दिया गया है γ पर (M, g) और एक वेक्टर फ़ील्ड V साथ में γ इसके व्युत्पन्न को परिभाषित किया गया है
औपचारिक रूप से, D पुलबैक (विभेदक ज्यामिति) है γ*∇ पुलबैक बंडल पर γ*TM.
विशेष रूप से, वक्र के अनुदिश एक सदिश क्षेत्र है γ अपने आप। अगर लुप्त हो जाता है, वक्र को सहसंयोजक व्युत्पन्न का जियोडेसिक कहा जाता है। औपचारिक रूप से, स्थिति को लागू किए गए पुलबैक कनेक्शन के गायब होने के रूप में दोहराया जा सकता है :
यदि सहसंयोजक व्युत्पन्न एक निश्चित मीट्रिक का लेवी-सिविटा कनेक्शन है, तो कनेक्शन के लिए जियोडेसिक्स वास्तव में मीट्रिक टेंसर के वे जियोडेसिक्स हैं जो उनकी चाप लंबाई के आनुपातिक रूप से पैरामीट्रिज्ड होते हैं।
समानांतर परिवहन
सामान्य तौर पर, किसी कनेक्शन के संबंध में वक्र के साथ समानांतर परिवहन वक्र के बिंदुओं पर स्पर्शरेखा स्थानों के बीच समरूपता को परिभाषित करता है। यदि कनेक्शन लेवी-सिविटा कनेक्शन है, तो ये समरूपताएं ऑर्थोगोनल समूह हैं - अर्थात, वे विभिन्न स्पर्शरेखा स्थानों पर आंतरिक उत्पादों को संरक्षित करते हैं।
नीचे दी गई छवियां ध्रुवीय समन्वय प्रणाली में व्यक्त, विमान पर दो अलग-अलग रीमैनियन मेट्रिक्स से जुड़े लेवी-सिविटा कनेक्शन के समानांतर परिवहन को दिखाती हैं। बाईं छवि का मीट्रिक मानक यूक्लिडियन दूरी से मेल खाता है , जबकि दाईं ओर की मीट्रिक का ध्रुवीय निर्देशांक में मानक रूप है (कब)। ), और इस प्रकार वेक्टर को सुरक्षित रखता है वृत्त की स्पर्शरेखा. इस दूसरे मीट्रिक के मूल में एक विलक्षणता है, जैसा कि इसे कार्टेशियन निर्देशांक में व्यक्त करके देखा जा सकता है:
उदाहरण: इकाई क्षेत्र में R3
होने देना ⟨ , ⟩ सामान्य अदिश गुणनफल पर हो R3. होने देना S2 इकाई क्षेत्र में हो R3. का स्पर्शरेखा स्थान S2 एक बिंदु पर m को स्वाभाविक रूप से वेक्टर उप-स्थान के साथ पहचाना जाता है R3 सभी वैक्टर ओर्थोगोनल से मिलकर बना है m. यह एक सदिश क्षेत्र का अनुसरण करता है Y पर S2 को मानचित्र के रूप में देखा जा सकता है Y : S2 → R3, जो संतुष्ट करता है के रूप में निरूपित करें dmY(X) मानचित्र का सहसंयोजक व्युत्पन्न Y वेक्टर की दिशा में X. तो हमारे पास हैं:
Lemma — The formula
It is straightforward to prove that ∇ satisfies the Leibniz identity and is C∞(S2) linear in the first variable. It is also a straightforward computation to show that this connection is torsion free. So all that needs to be proved here is that the formula above does indeed define a vector field. That is, we need to prove that for all m in S2
वास्तव में, यह कनेक्शन मेट्रिक ऑन के लिए लेवी-सिविटा कनेक्शन है S2 विरासत में मिला R3. दरअसल, कोई यह जांच सकता है कि यह कनेक्शन मीट्रिक को सुरक्षित रखता है।
यह भी देखें
- वेइटज़ेनबॉक कनेक्शन
टिप्पणियाँ
- ↑ 1.0 1.1 Levi-Civita, Tullio (1917). "Nozione di parallelismo in una varietà qualunque" [The notion of parallelism on any manifold]. Rendiconti del Circolo Matematico di Palermo (in italiano). 42: 173–205. doi:10.1007/BF03014898. JFM 46.1125.02. S2CID 122088291.
- ↑ Christoffel, Elwin B. (1869). "Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades". Journal für die reine und angewandte Mathematik. 1869 (70): 46–70. doi:10.1515/crll.1869.70.46. S2CID 122999847.
- ↑ See Spivak, Michael (1999). A Comprehensive introduction to differential geometry (Volume II). Publish or Perish Press. p. 238. ISBN 0-914098-71-3.
- ↑ Brouwer, L. E. J. (1906). "Het krachtveld der niet-Euclidische, negatief gekromde ruimten". Koninklijke Akademie van Wetenschappen. Verslagen. 15: 75–94.
- ↑ Brouwer, L. E. J. (1906). "The force field of the non-Euclidean spaces with negative curvature". Koninklijke Akademie van Wetenschappen. Proceedings. 9: 116–133. Bibcode:1906KNAB....9..116B.
- ↑ Schouten, Jan Arnoldus (1918). "Die direkte Analysis zur neueren Relativiteitstheorie". Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. 12 (6): 95.
- ↑ Weyl, Hermann (1918). "Gravitation und Elektrizitat". Sitzungsberichte Berliner Akademie: 465–480.
- ↑ Weyl, Hermann (1918). "Reine Infinitesimal geometrie". Mathematische Zeitschrift. 2 (3–4): 384–411. Bibcode:1918MatZ....2..384W. doi:10.1007/bf01199420. S2CID 186232500.
- ↑ Carmo, Manfredo Perdigão do (1992). रीमैनियन ज्यामिति. Francis J. Flaherty. Boston: Birkhäuser. ISBN 0-8176-3490-8. OCLC 24667701.
संदर्भ
- Boothby, William M. (1986). An introduction to differentiable manifolds and Riemannian geometry. Academic Press. ISBN 0-12-116052-1.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1963). Foundations of differential geometry. John Wiley & Sons. ISBN 0-470-49647-9. See Volume I pag. 158
बाहरी संबंध
- "Levi-Civita connection", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- MathWorld: Levi-Civita Connection
- PlanetMath: Levi-Civita Connection
- Levi-Civita connection at the Manifold Atlas