विनिमय आव्यूह

From Vigyanwiki
Revision as of 14:27, 25 July 2023 by alpha>Abhishek (Abhishek moved page विनिमय मैट्रिक्स to विनिमय आव्यूह without leaving a redirect)

गणित में, विशेष रूप से रैखिक बीजगणित में विनिमय आव्यूह (जिसे उत्क्रमण आव्यूह, पश्च तत्समक, या मानक अनैच्छिक क्रमपरिवर्तन भी कहा जाता है) क्रमपरिवर्तन मैट्रिसेस के विशेष प्रकरण हैं, जहां 1 तत्व प्रतिविकर्ण (एंटीडायगोनल) पर हैं और अन्य सभी तत्व शून्य पर हैं। दूसरे शब्दों में, वे तत्समक आव्यूह के 'पंक्ति-प्रतिलोम' या 'स्तंभ-प्रतिलोम' संस्करण हैं।[1]


परिभाषा

यदि J n × n विनिमय आव्यूह है, तो J के तत्व हैं।

गुण

  • विनिमय आव्यूह द्वारा एक आव्यूह को पूर्व-गुणित करने से पूर्व की पंक्तियों की स्थिति लंबवत रूप से फ़्लिप हो जाती है, अर्थात,
  • विनिमय आव्यूह द्वारा एक आव्यूह को पश्चात गुणन करने से पूर्व के कॉलम की स्थिति क्षैतिज रूप से फ़्लिप हो जाती है, अर्थात,
  • विनिमय आव्यूह सममित हैं; अर्थात्, JnT = Jn हैं
  • किसी भी पूर्णांक k के लिए, यदि k सम है तो Jnk = I यदि k विषम है तो Jnk = Jn है। विशेष रूप से, Jn एक अनैच्छिक आव्यूह है; अर्थात् Jn−1 = Jn है।
  • यदि n विषम है तो Jn का ट्रेस 1 है और यदि n सम है तो 0 है। दूसरे शब्दों में, Jn का ट्रेस के समान है।
  • Jn का निर्धारक के समान है। n के फलन के रूप में, इसका आवर्त 4 है, जो 1, 1, −1, −1 देता है जब n क्रमशः 4 से 0, 1, 2, और 3 के सर्वांगसम मापांक है।
  • Jn का अभिलक्षणिक बहुपद है जब n सम है, और जब n विषम है।
  • Jn का एडजुगेट आव्यूह है।

संबंध

  • विनिमय आव्यूह सबसे सरल प्रति-विकर्ण आव्यूह है।
  • कोई भी आव्यूह A जो प्रतिबंध AJ = JA को संतुष्ट करता है उसे केन्द्रसममित कहा जाता है।
  • कोई भी आव्यूह A जो AJ = JAT की स्थिति को संतुष्ट करता है, उसे पर्सिमेट्रिक कहा जाता है।
  • सममित आव्यूह A जो प्रतिबंध AJ = JA को संतुष्ट करता हैं, द्विसममित आव्यूह कहलाते हैं। द्विसममितीय मैट्रिसेस केन्द्रसममित और पर्सिमेट्रिक दोनों होते हैं।

यह भी देखें

संदर्भ

  1. Horn, Roger A.; Johnson, Charles R. (2012), Matrix Analysis (2nd ed.), Cambridge University Press, p. 33, ISBN 9781139788885.