मल्टी-डिसिप्लिनरी डिज़ाइन
This article needs additional citations for verification. (April 2017) (Learn how and when to remove this template message) |
मल्टी-डिसिप्लिनरी डिज़ाइन ऑप्टिमाइज़ेशन (एमडीओ) अभियांत्रिकी का एक क्षेत्र है जो कई विषयों को शामिल करते हुए डिज़ाइन समस्याओं को हल करने के लिए ऑप्टिमाइज़ेशन (गणित) विधियों का उपयोग करता है। इसे बहुविषयक सिस्टम डिज़ाइन अनुकूलन (MSDO), और बहुविषयक डिज़ाइन विश्लेषण और अनुकूलन (MDAO) के रूप में भी जाना जाता है।
एमडीओ डिजाइनरों को सभी प्रासंगिक विषयों को एक साथ शामिल करने की अनुमति देता है। एक साथ समस्या का इष्टतम प्रत्येक अनुशासन को क्रमिक रूप से अनुकूलित करके पाए गए डिज़ाइन से बेहतर है, क्योंकि यह विषयों के बीच की बातचीत का फायदा उठा सकता है। हालाँकि, सभी विषयों को एक साथ शामिल करने से समस्या की कम्प्यूटेशनल जटिलता सिद्धांत में काफी वृद्धि होती है।
इन तकनीकों का उपयोग ऑटोमोबाइल डिज़ाइन, नौसेना वास्तुकला, इलेक्ट्रानिक्स , वास्तुकला, कंप्यूटर और बिजली वितरण सहित कई क्षेत्रों में किया गया है। हालाँकि, सबसे अधिक अनुप्रयोग अंतरिक्ष इंजिनीयरिंग के क्षेत्र में हुए हैं, जैसे विमान और अंतरिक्ष यान डिज़ाइन। उदाहरण के लिए, प्रस्तावित बोइंग मिश्रित पंख का शरीर (बीडब्ल्यूबी) विमान अवधारणा ने वैचारिक और प्रारंभिक डिजाइन चरणों में एमडीओ का बड़े पैमाने पर उपयोग किया है। BWB डिज़ाइन में विचार किए जाने वाले विषय वायुगतिकी, संरचनात्मक विश्लेषण, वायु प्रणोदन, नियंत्रण सिद्धांत और अर्थशास्त्र हैं।
इतिहास
परंपरागत रूप से इंजीनियरिंग आमतौर पर टीमों द्वारा की जाती है, जिनमें से प्रत्येक के पास एक विशिष्ट अनुशासन, जैसे वायुगतिकी या संरचना में विशेषज्ञता होती है। प्रत्येक टीम आमतौर पर क्रमिक रूप से एक व्यावहारिक डिज़ाइन विकसित करने के लिए अपने सदस्यों के अनुभव और निर्णय का उपयोग करेगी। उदाहरण के लिए, वायुगतिकी विशेषज्ञ शरीर के आकार की रूपरेखा तैयार करेंगे, और संरचनात्मक विशेषज्ञों से अपेक्षा की जाएगी कि वे अपने डिजाइन को निर्दिष्ट आकार के भीतर फिट करें। टीमों के लक्ष्य आम तौर पर प्रदर्शन-संबंधी थे, जैसे अधिकतम गति, न्यूनतम ड्रैग (भौतिकी), या न्यूनतम संरचनात्मक वजन।
1970 और 1990 के बीच, विमान उद्योग में दो प्रमुख विकासों ने विमान डिजाइन इंजीनियरों के उनकी डिजाइन समस्याओं के प्रति दृष्टिकोण को बदल दिया। पहला कंप्यूटर-सहायता प्राप्त डिज़ाइन था, जिसने डिज़ाइनरों को अपने डिज़ाइनों को शीघ्रता से संशोधित करने और उनका विश्लेषण करने की अनुमति दी। दूसरा, अधिकांश एयरलाइनों और सैन्य संगठनों, विशेष रूप से संयुक्त राज्य अमेरिका की सेना की खरीद नीति में प्रदर्शन-केंद्रित दृष्टिकोण से उत्पाद जीवनचक्र प्रबंधन लागत के मुद्दों पर जोर देने वाले परिवर्तन थे। इससे आर्थिक कारकों और विनिर्माण क्षमता, विश्वसनीयता (इंजीनियरिंग), रख-रखाव आदि सहित सुविधाओं के रूप में जाने जाने वाले गुणों पर एकाग्रता बढ़ गई।
1990 के बाद से, तकनीकों का विस्तार अन्य उद्योगों तक हो गया है। वैश्वीकरण के परिणामस्वरूप अधिक वितरित, विकेंद्रीकृत डिज़ाइन टीमें सामने आई हैं। उच्च-प्रदर्शन वाले निजी कंप्यूटर ने बड़े पैमाने पर केंद्रीकृत सुपर कंप्यूटर की जगह ले ली है और इंटरनेट और स्थानीय क्षेत्र नेटवर्क ने डिज़ाइन जानकारी साझा करने की सुविधा प्रदान की है। कई विषयों में अनुशासनात्मक डिज़ाइन सॉफ़्टवेयर (जैसे ऑप्टिस्ट्रक्चर या NASTRAN, संरचनात्मक डिज़ाइन के लिए एक सीमित तत्व विश्लेषण कार्यक्रम) बहुत परिपक्व हो गए हैं। इसके अलावा, कई अनुकूलन एल्गोरिदम, विशेष रूप से जनसंख्या-आधारित एल्गोरिदम, काफी उन्नत हुए हैं।
संरचनात्मक अनुकूलन में उत्पत्ति
जबकि अनुकूलन विधियां लगभग गणना जितनी ही पुरानी हैं, आइजैक न्यूटन, लियोनहार्ड यूलर, डेनियल बर्नौली और जोसेफ लुई लैग्रेंज के समय की हैं, जिन्होंने ज़ंजीर का वक्र के आकार जैसी समस्याओं को हल करने के लिए उनका उपयोग किया था, संख्यात्मक अनुकूलन डिजिटल युग में प्रमुखता तक पहुंच गया। . संरचनात्मक डिज़ाइन में इसका व्यवस्थित अनुप्रयोग 1960 में श्मिट द्वारा इसकी वकालत के समय से शुरू होता है।[1][2] 1970 के दशक में संरचनात्मक अनुकूलन की सफलता ने 1980 के दशक में बहुविषयक डिजाइन अनुकूलन (एमडीओ) के उद्भव को प्रेरित किया। जारोस्लाव सोबिस्की ने विशेष रूप से एमडीओ अनुप्रयोगों के लिए डिज़ाइन की गई अपघटन विधियों का समर्थन किया।[3] निम्नलिखित सारांश एमडीओ के लिए अनुकूलन विधियों पर केंद्रित है। सबसे पहले, प्रारंभिक संरचनात्मक अनुकूलन और एमडीओ समुदाय द्वारा उपयोग की जाने वाली लोकप्रिय ग्रेडिएंट-आधारित विधियों की समीक्षा की जाती है। फिर पिछले दर्जन वर्षों में विकसित उन तरीकों का सारांश दिया गया है।
ग्रेडियेंट -आधारित विधियाँ
1960 और 1970 के दशक के दौरान ग्रेडिएंट-आधारित तरीकों का उपयोग करने वाले संरचनात्मक अनुकूलन चिकित्सकों के दो स्कूल थे: इष्टतमता मानदंड और गणितीय अनुकूलन। इष्टतमता मानदंड स्कूल ने करुश-कुह्न-टकर स्थितियों के आधार पर पुनरावर्ती सूत्र प्राप्त किए | करुश-कुह्न-टकर (केकेटी) एक इष्टतम डिजाइन के लिए आवश्यक शर्तें। केकेटी शर्तों को संरचनात्मक समस्याओं के वर्गों पर लागू किया गया था जैसे तनाव, विस्थापन, बकलिंग, या आवृत्तियों पर बाधाओं के साथ न्यूनतम वजन डिजाइन [रोज़वानी, बर्क, वेंकैया, खोट, एट अल।] प्रत्येक वर्ग के लिए विशेष रूप से आकार बदलने वाले अभिव्यक्ति प्राप्त करने के लिए। गणितीय प्रोग्रामिंग स्कूल ने संरचनात्मक अनुकूलन समस्याओं के लिए शास्त्रीय ग्रेडिएंट-आधारित तरीकों को नियोजित किया। प्रयोग करने योग्य व्यवहार्य दिशाओं की विधि, रोसेन की ग्रेडिएंट प्रोजेक्शन (सामान्यीकृत कम ग्रेडिएंट) विधि, अनुक्रमिक अप्रतिबंधित न्यूनीकरण तकनीक, अनुक्रमिक रैखिक प्रोग्रामिंग और अंततः अनुक्रमिक द्विघात प्रोग्रामिंग विधियां सामान्य विकल्प थीं। शिटकोव्स्की एट अल। 1990 के दशक की शुरुआत में प्रचलित तरीकों की समीक्षा की।
एमडीओ समुदाय के लिए अद्वितीय ग्रेडिएंट विधियां गणित प्रोग्रामिंग के साथ इष्टतमता मानदंडों के संयोजन से प्राप्त होती हैं, जिन्हें पहली बार फ़्ल्यूरी और श्मिट के मौलिक काम में पहचाना गया था जिन्होंने संरचनात्मक अनुकूलन के लिए सन्निकटन अवधारणाओं की एक रूपरेखा का निर्माण किया था। उन्होंने माना कि इष्टतमता मानदंड तनाव और विस्थापन बाधाओं के लिए बहुत सफल थे, क्योंकि यह दृष्टिकोण पारस्परिक डिजाइन स्थान में रैखिक टेलर श्रृंखला सन्निकटन का उपयोग करके लैग्रेंज गुणक के लिए दोहरी समस्या को हल करने के लिए था। दक्षता में सुधार के लिए अन्य तकनीकों, जैसे बाधा हटाना, क्षेत्रीयकरण, और डिज़ाइन परिवर्तनीय लिंकिंग के संयोजन में, वे दोनों स्कूलों के काम को एकजुट करने में सफल रहे। यह सन्निकटन अवधारणा आधारित दृष्टिकोण आधुनिक संरचनात्मक डिजाइन सॉफ्टवेयर जैसे अल्टेयर - ऑप्टिस्ट्रक्चर, एस्ट्रोस, एमएससी.नास्ट्रान, पीएचएक्स मॉडल केंद्र , जेनेसिस, आईसाइट और आई-डीईएएस में अनुकूलन मॉड्यूल का आधार बनता है।
तनाव और विस्थापन प्रतिक्रिया कार्यों के लिए पारस्परिक सन्निकटन श्मिट और मिउरा द्वारा संरचनात्मक अनुकूलन के लिए अनुमान शुरू किए गए थे। प्लेटों के लिए अन्य मध्यवर्ती चर नियोजित किए गए थे। रैखिक और पारस्परिक चर को मिलाकर, स्टर्नेस और हफ़्ताका ने बकलिंग सन्निकटन में सुधार करने के लिए एक रूढ़िवादी सन्निकटन विकसित किया। फैडेल ने पिछले बिंदु के लिए ग्रेडिएंट मिलान स्थिति के आधार पर प्रत्येक फ़ंक्शन के लिए एक उपयुक्त मध्यवर्ती डिज़ाइन चर चुना। वेंडरप्लाट्स ने उच्च गुणवत्ता वाले सन्निकटन की दूसरी पीढ़ी की शुरुआत की जब उन्होंने तनाव बाधाओं के सन्निकटन में सुधार के लिए एक मध्यवर्ती प्रतिक्रिया सन्निकटन के रूप में बल सन्निकटन विकसित किया। कैनफ़ील्ड ने आइजेनवैल्यू सन्निकटन की सटीकता में सुधार करने के लिए रेले भागफल सन्निकटन विकसित किया। बार्थेलेमी और हफ़्ताका ने 1993 में सन्निकटन की एक व्यापक समीक्षा प्रकाशित की।
गैर-ग्रेडिएंट-आधारित विधियाँ
हाल के वर्षों में, आनुवंशिक एल्गोरिदम, तैयार किए हुयी धातु पे पानी चढाने की कला और एंट कॉलोनी अनुकूलन एल्गोरिदम सहित गैर-ग्रेडिएंट-आधारित विकासवादी तरीके अस्तित्व में आए। वर्तमान में, कई शोधकर्ता प्रभाव क्षति, गतिशील विफलता और वास्तविक समय विश्लेषक | वास्तविक समय विश्लेषण जैसी जटिल समस्याओं के लिए सर्वोत्तम तरीकों और तरीकों के बारे में आम सहमति पर पहुंचने का प्रयास कर रहे हैं। इस उद्देश्य के लिए, शोधकर्ता अक्सर बहुउद्देश्यीय और बहुमानदंडीय डिज़ाइन विधियों का उपयोग करते हैं।
हाल के एमडीओ तरीके
एमडीओ चिकित्सकों ने पिछले दर्जन वर्षों में कई व्यापक क्षेत्रों में अनुकूलन (गणित) विधियों की जांच की है। इनमें अपघटन विधियाँ, सन्निकटन विधियाँ, विकासवादी एल्गोरिदम, मेमेटिक एल्गोरिदम, प्रतिक्रिया सतह पद्धति, विश्वसनीयता-आधारित अनुकूलन और बहुउद्देश्यीय अनुकूलन दृष्टिकोण शामिल हैं।
विघटन विधियों की खोज पिछले दर्जन वर्षों में कई दृष्टिकोणों के विकास और तुलना के साथ जारी रही है, जिन्हें विभिन्न प्रकार से पदानुक्रमित और गैर-पदानुक्रमित, या सहयोगात्मक और गैर-सहयोगी के रूप में वर्गीकृत किया गया है। सन्निकटन विधियों ने दृष्टिकोणों के एक विविध सेट को फैलाया, जिसमें सरोगेट मॉडल (अक्सर मेटामॉडल के रूप में संदर्भित), परिवर्तनीय निष्ठा मॉडल और ट्रस्ट क्षेत्र प्रबंधन रणनीतियों के आधार पर सन्निकटन का विकास शामिल है। मल्टीपॉइंट सन्निकटन के विकास ने प्रतिक्रिया सतह विधियों के साथ अंतर को धुंधला कर दिया। सबसे लोकप्रिय तरीकों में से कुछ में युद्ध और मूविंग मिनिमम स्क्वेयर विधि शामिल हैं।
सांख्यिकीय समुदाय द्वारा बड़े पैमाने पर विकसित प्रतिक्रिया सतह पद्धति ने पिछले दर्जन वर्षों में एमडीओ समुदाय में बहुत ध्यान आकर्षित किया है। उनके उपयोग के लिए एक प्रेरक शक्ति उच्च प्रदर्शन कंप्यूटिंग के लिए बड़े पैमाने पर समानांतर प्रणालियों का विकास रही है, जो स्वाभाविक रूप से प्रतिक्रिया सतहों के निर्माण के लिए आवश्यक कई विषयों से फ़ंक्शन मूल्यांकन वितरित करने के लिए उपयुक्त हैं। वितरित प्रसंस्करण विशेष रूप से जटिल प्रणालियों की डिजाइन प्रक्रिया के लिए उपयुक्त है जिसमें विभिन्न विषयों का विश्लेषण विभिन्न कंप्यूटिंग प्लेटफार्मों पर और यहां तक कि विभिन्न टीमों द्वारा स्वाभाविक रूप से पूरा किया जा सकता है।
विकासवादी तरीकों ने एमडीओ अनुप्रयोगों के लिए गैर-ग्रेडिएंट तरीकों की खोज का मार्ग प्रशस्त किया। उन्हें बड़े पैमाने पर समानांतर उच्च प्रदर्शन वाले कंप्यूटरों की उपलब्धता से भी लाभ हुआ है, क्योंकि उन्हें स्वाभाविक रूप से ग्रेडिएंट-आधारित तरीकों की तुलना में कई अधिक फ़ंक्शन मूल्यांकन की आवश्यकता होती है। उनका प्राथमिक लाभ अलग-अलग डिज़ाइन चर को संभालने की उनकी क्षमता और विश्व स्तर पर इष्टतम समाधान खोजने की क्षमता में निहित है।
विश्वसनीयता-आधारित अनुकूलन (आरबीओ) एमडीओ में रुचि का एक बढ़ता हुआ क्षेत्र है। प्रतिक्रिया सतह विधियों और विकासवादी एल्गोरिदम की तरह, आरबीओ समानांतर गणना से लाभान्वित होता है, क्योंकि विफलता की संभावना की गणना करने के लिए संख्यात्मक एकीकरण के लिए कई फ़ंक्शन मूल्यांकन की आवश्यकता होती है। पहले दृष्टिकोणों में से एक ने विफलता की संभावना को एकीकृत करने के लिए सन्निकटन अवधारणाओं को नियोजित किया। शास्त्रीय प्रथम-क्रम विश्वसनीयता विधि (FORM) और द्वितीय-क्रम विश्वसनीयता विधि (SORM) अभी भी लोकप्रिय हैं। प्रोफेसर रमाना ग्रांडी ने सटीकता और दक्षता में सुधार के लिए दो-बिंदु अनुकूली गैर-रेखीय सन्निकटन द्वारा पाए गए विफलता के सबसे संभावित बिंदु के बारे में उपयुक्त सामान्यीकृत चर का उपयोग किया। दक्षिण पश्चिम अनुसंधान संस्थान ने वाणिज्यिक सॉफ्टवेयर में अत्याधुनिक विश्वसनीयता विधियों को लागू करते हुए आरबीओ के विकास में प्रमुखता से काम किया है। आरबीओ अल्टेयर के ऑप्टिस्ट्रक्चर और एमएससी के नास्ट्रान जैसे वाणिज्यिक संरचनात्मक विश्लेषण कार्यक्रमों में प्रदर्शित होने के लिए पर्याप्त परिपक्वता तक पहुंच गया है।
विश्वसनीयता-आधारित डिज़ाइन अनुकूलन के साथ कुछ तार्किक चिंताओं (उदाहरण के लिए, ब्लाउ की दुविधा) के जवाब में उपयोगिता-आधारित संभाव्यता अधिकतमकरण विकसित किया गया था।[4] यह दृष्टिकोण उद्देश्य फ़ंक्शन के कुछ मूल्य से अधिक होने और सभी बाधाओं के संतुष्ट होने की संयुक्त संभावना को अधिकतम करने पर केंद्रित है। जब कोई वस्तुनिष्ठ कार्य नहीं होता है, तो उपयोगिता-आधारित संभाव्यता अधिकतमीकरण संभाव्यता-अधिकतमकरण समस्या में बदल जाता है। जब बाधाओं में कोई अनिश्चितता नहीं होती है, तो यह एक सीमित उपयोगिता-अधिकतमकरण समस्या में बदल जाती है। (यह दूसरी समतुल्यता इसलिए उत्पन्न होती है क्योंकि किसी फ़ंक्शन की उपयोगिता को हमेशा उस फ़ंक्शन की कुछ यादृच्छिक चर से अधिक होने की संभावना के रूप में लिखा जा सकता है।) क्योंकि यह विश्वसनीयता-आधारित अनुकूलन से जुड़ी प्रतिबंधित अनुकूलन समस्या को एक अप्रतिबंधित अनुकूलन समस्या में बदल देता है, यह अक्सर होता है कम्प्यूटेशनल रूप से अधिक सुव्यवस्थित समस्या सूत्रीकरण।
विपणन क्षेत्र में उपभोक्ताओं के उपयोगिता कार्यों के मॉडल का अनुमान लगाने के लिए प्रयोगात्मक विश्लेषण के आधार पर, मल्टीएट्रिब्यूट उत्पादों और सेवाओं के लिए इष्टतम डिजाइन के बारे में एक विशाल साहित्य है। इन विधियों को संयुक्त विश्लेषण के रूप में जाना जाता है। उत्तरदाताओं को वैकल्पिक उत्पाद प्रस्तुत किए जाते हैं, विभिन्न पैमानों का उपयोग करके विकल्पों के बारे में प्राथमिकताओं को मापा जाता है और उपयोगिता फ़ंक्शन का अनुमान विभिन्न तरीकों से लगाया जाता है (प्रतिगमन और सतह प्रतिक्रिया विधियों से लेकर पसंद मॉडल तक भिन्न)। मॉडल का आकलन करने के बाद सबसे अच्छा डिजाइन तैयार किया जाता है। प्रायोगिक डिज़ाइन को आमतौर पर अनुमानकों के विचरण को कम करने के लिए अनुकूलित किया जाता है। इन विधियों का व्यवहार में व्यापक रूप से उपयोग किया जाता है।
समस्या निरूपण
समस्या निर्माण आम तौर पर प्रक्रिया का सबसे कठिन हिस्सा होता है। यह विषयों के डिज़ाइन चर, बाधाओं, उद्देश्यों और मॉडलों का चयन है। एक और विचार समस्या में अंतःविषय युग्मन की ताकत और चौड़ाई पर है।[5]
डिज़ाइन चर
डिज़ाइन वैरिएबल एक विनिर्देश है जो डिज़ाइनर के दृष्टिकोण से नियंत्रित किया जा सकता है। उदाहरण के लिए, किसी संरचनात्मक सदस्य की मोटाई को डिज़ाइन चर माना जा सकता है। दूसरा हो सकता है सामग्री का चुनाव। डिज़ाइन चर निरंतर हो सकते हैं (जैसे कि विंग स्पैन), असतत (जैसे विंग में पसलियों की संख्या), या बूलियन (जैसे कि मोनोप्लेन या बीप्लैन बनाना है)। निरंतर चर के साथ डिज़ाइन समस्याओं को आम तौर पर अधिक आसानी से हल किया जाता है।
डिज़ाइन चर अक्सर सीमित होते हैं, यानी, उनके पास अक्सर अधिकतम और न्यूनतम मान होते हैं। समाधान विधि के आधार पर, इन सीमाओं को बाधाओं के रूप में या अलग से माना जा सकता है।
जिन महत्वपूर्ण चरों पर ध्यान देने की आवश्यकता है उनमें से एक अनिश्चितता है। अनिश्चितता, जिसे अक्सर ज्ञानमीमांसीय अनिश्चितता कहा जाता है, ज्ञान की कमी या अधूरी जानकारी के कारण उत्पन्न होती है। अनिश्चितता अनिवार्य रूप से अज्ञात चर है लेकिन यह सिस्टम की विफलता का कारण बन सकती है।
बाधाएँ
बाधा एक ऐसी शर्त है जिसे डिज़ाइन को व्यवहार्य बनाने के लिए संतुष्ट किया जाना चाहिए। विमान के डिज़ाइन में एक बाधा का एक उदाहरण यह है कि एक पंख द्वारा उत्पन्न लिफ्ट (बल) विमान के वजन के बराबर होनी चाहिए। भौतिक कानूनों के अलावा, बाधाएं संसाधन सीमाओं, उपयोगकर्ता आवश्यकताओं या विश्लेषण मॉडल की वैधता पर सीमाओं को प्रतिबिंबित कर सकती हैं। समाधान एल्गोरिदम द्वारा बाधाओं का स्पष्ट रूप से उपयोग किया जा सकता है या लैग्रेंज गुणक का उपयोग करके उद्देश्य में शामिल किया जा सकता है।
उद्देश्य
उद्देश्य एक संख्यात्मक मान है जिसे अधिकतम या न्यूनतम किया जाना है। उदाहरण के लिए, एक डिजाइनर अधिकतम लाभ या वजन कम करना चाह सकता है। कई समाधान विधियाँ केवल एकल उद्देश्यों के साथ काम करती हैं। इन विधियों का उपयोग करते समय, डिजाइनर आम तौर पर विभिन्न उद्देश्यों को महत्व देता है और उन्हें एक ही उद्देश्य बनाने के लिए जोड़ता है। अन्य विधियाँ बहुउद्देश्यीय अनुकूलन की अनुमति देती हैं, जैसे पेरेटो दक्षता की गणना।
मॉडल
डिज़ाइनर को बाधाओं और उद्देश्यों को डिज़ाइन चर से जोड़ने के लिए मॉडल भी चुनना होगा। ये मॉडल शामिल अनुशासन पर निर्भर हैं। वे अनुभवजन्य मॉडल हो सकते हैं, जैसे विमान की कीमतों का प्रतिगमन विश्लेषण, सैद्धांतिक मॉडल, जैसे कम्प्यूटेशनल तरल गतिशीलता, या इनमें से किसी एक के कम-ऑर्डर मॉडल। मॉडल चुनने में डिजाइनर को विश्लेषण समय के साथ निष्ठा का आदान-प्रदान करना चाहिए।
अधिकांश डिज़ाइन समस्याओं की बहु-विषयक प्रकृति मॉडल चयन और कार्यान्वयन को जटिल बनाती है। उद्देश्यों और बाधाओं के मूल्यों को खोजने के लिए अक्सर विषयों के बीच कई पुनरावृत्तियाँ आवश्यक होती हैं। उदाहरण के तौर पर, एक पंख पर वायुगतिकीय भार पंख की संरचनात्मक विकृति को प्रभावित करता है। संरचनात्मक विकृति बदले में पंख के आकार और वायुगतिकीय भार को बदल देती है। इसलिए, एक विंग का विश्लेषण करते समय, वायुगतिकीय और संरचनात्मक विश्लेषणों को बारी-बारी से कई बार चलाया जाना चाहिए जब तक कि भार और विरूपण अभिसरण न हो जाए।
मानक प्रपत्र
एक बार डिज़ाइन चर, बाधाएं, उद्देश्य और उनके बीच संबंध चुने जाने के बाद, समस्या को निम्नलिखित रूप में व्यक्त किया जा सकता है:
- पाना वह न्यूनतम करता है का विषय है , और
कहाँ एक उद्देश्य है, डिज़ाइन चर का एक वेक्टर (ज्यामितीय) है, असमानता बाधाओं का एक वेक्टर है, समानता बाधाओं का एक वेक्टर है, और और डिज़ाइन चर पर निचली और ऊपरी सीमा के वेक्टर हैं। उद्देश्य को -1 से गुणा करके अधिकतमकरण समस्याओं को न्यूनतमकरण समस्याओं में परिवर्तित किया जा सकता है। इसी तरह से बाधाओं को उलटा किया जा सकता है। समानता की बाधाओं को दो असमानता की बाधाओं से बदला जा सकता है।
समस्या समाधान
समस्या को आमतौर पर अनुकूलन के क्षेत्र से उपयुक्त तकनीकों का उपयोग करके हल किया जाता है। इनमें ग्रेडिएंट-आधारित एल्गोरिदम, जनसंख्या-आधारित एल्गोरिदम या अन्य शामिल हैं। बहुत सरल समस्याओं को कभी-कभी रैखिक रूप से व्यक्त किया जा सकता है; उस स्थिति में रैखिक प्रोग्रामिंग की तकनीकें लागू होती हैं।
ग्रेडिएंट-आधारित विधियाँ
- संयुक्त समीकरण
- न्यूटन की विधि
- तेज वंश
- संयुग्मित ढाल
- अनुक्रमिक द्विघात प्रोग्रामिंग
ग्रेडिएंट-मुक्त विधियाँ
- हुक-जीव्स पैटर्न खोज
- नेल्डर-मीड विधि
जनसंख्या-आधारित विधियाँ
- जेनेटिक एल्गोरिद्म
- मेमेटिक एल्गोरिदम
- कण झुंड अनुकूलन
- सद्भाव खोज
- अब
अन्य विधियाँ
- यादृच्छिक खोज
- ग्रिड खोज
- तैयार किए हुयी धातु पे पानी चढाने की कला
- जानवर-बल खोज
- मुझे पता है (स्व-संगठन पर आधारित अप्रत्यक्ष अनुकूलन)
इनमें से अधिकांश तकनीकों के लिए उद्देश्यों और बाधाओं के बड़ी संख्या में मूल्यांकन की आवश्यकता होती है। अनुशासनात्मक मॉडल अक्सर बहुत जटिल होते हैं और एकल मूल्यांकन के लिए काफी समय लग सकता है। इसलिए समाधान अत्यधिक समय लेने वाला हो सकता है। कई अनुकूलन तकनीकें समानांतर कंप्यूटिंग के अनुकूल हैं। अधिकांश वर्तमान शोध आवश्यक समय को कम करने के तरीकों पर केंद्रित है।
साथ ही, किसी सामान्य समस्या के वैश्विक अनुकूलन को खोजने के लिए किसी भी मौजूदा समाधान पद्धति की गारंटी नहीं है (खोज और अनुकूलन में कोई मुफ्त लंच नहीं देखें)। ग्रेडिएंट-आधारित विधियाँ स्थानीय ऑप्टिमा को उच्च विश्वसनीयता के साथ ढूंढती हैं लेकिन आम तौर पर स्थानीय ऑप्टिमा से बचने में असमर्थ होती हैं। सिम्युलेटेड एनीलिंग और जेनेटिक एल्गोरिदम जैसी स्टोचैस्टिक विधियां उच्च संभावना के साथ एक अच्छा समाधान ढूंढ लेंगी, लेकिन समाधान के गणितीय गुणों के बारे में बहुत कम कहा जा सकता है। इसके स्थानीय इष्टतम होने की भी गारंटी नहीं है। हर बार चलाए जाने पर ये विधियाँ अक्सर एक अलग डिज़ाइन पाती हैं।
यह भी देखें
- अनुकूलन सॉफ्टवेयर की सूची
- मोडफ्रंटियर
- मॉडलसेंटर
- पीसात
- ओपनएमडीएओ
- जेमसेओ
संदर्भ
- ↑ Vanderplaats, G.N. (1987). Mota Soares, C.A. (ed.). "संख्यात्मक अनुकूलन तकनीक". Computer Aided Optimal Design: Structural and Mechanical Systems. NATO ASI Series (Series F: Computer and Systems Sciences). Berlin: Springer. 27: 197–239. doi:10.1007/978-3-642-83051-8_5. ISBN 978-3-642-83053-2.
The first formal statement of nonlinear programming (numerical optimization) applied to structural design was offered by Schmit in 1960.
- ↑ Schmit, L.A. (1960). "व्यवस्थित संश्लेषण द्वारा संरचनात्मक डिजाइन". Proceedings, 2nd Conference on Electronic Computations. New York: ASCE: 105–122.
- ↑ Martins, Joaquim R. R. A.; Lambe, Andrew B. (2013). "Multidisciplinary design optimization: A Survey of architectures". AIAA Journal (in English). 51 (9): 2049–2075. doi:10.2514/1.J051895.
- ↑ Bordley, Robert F.; Pollock, Steven M. (September 2009). "विश्वसनीयता-आधारित डिज़ाइन अनुकूलन के लिए एक निर्णय विश्लेषणात्मक दृष्टिकोण". Operations Research. 57 (5): 1262–1270. doi:10.1287/opre.1080.0661.
- ↑ Martins, Joaquim R. R. A.; Ning, Andrew (2021-10-01). इंजीनियरिंग डिज़ाइन अनुकूलन (in English). Cambridge University Press. ISBN 978-1108833417.
- Avriel, M., Rijckaert, M.J. and Wilde, D.J. (eds.), Optimization and Design, Prentice-Hall, 1973.
- Avriel, M. and Dembo, R.S. (eds.), Mathematical Programming Studies on Engineering Optimization, North-Holland, 1979.
- Cramer, E.J., Dennis Jr., J.E., Frank, P.D., Lewis, R.M., and Shubin, G.R., Problem Formulation for Multidisciplinary Optimization, SIAM J. Optim., 4 (4): 754–776, 1994.
- Deb, K. "Current trends in evolutionary multi-objective optimization", Int. J. Simul. Multi. Design Optim., 1 1 (2007) 1–8.
- Lambe, A. B. and Martins, J. R. R. A. "Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes". Structural and Multidisciplinary Optimization, 46:273–284, August 2012. doi:10.1007/s00158-012-0763-y.
- Siddall, J.N., Optimal Engineering Design, CRC, 1982.
- Vanderplaats, G. N., Multidiscipline Design Optimization, Vanderplaatz R&D, Inc., 2007.
- Viana, F.A.C., Simpson, T.W., Balabanov, V. and Toropov, V. "Metamodeling in multidisciplinary design optimization: How far have we really come?" AIAA Journal 52 (4) 670–690, 2014 (DOI: 10.2514/1.J052375)