रूपांतरण (फलन)
गणित में, परिवर्तन एक फ़ंक्शन (गणित) एफ है, आमतौर पर कुछ ज्यामिति के आधार पर, जो एक सेट (गणित) एक्स को स्वयं में मैप करता है, यानी। f: X → X.[1][2][3]
उदाहरणों में वेक्टर रिक्त स्थान और ज्यामितीय परिवर्तनों के रैखिक परिवर्तन शामिल हैं, जिसमें प्रक्षेप्य परिवर्तन, एफ़िन परिवर्तन, और विशिष्ट एफ़िन परिवर्तन, जैसे घूर्णन, प्रतिबिंब (गणित) और अनुवाद (ज्यामिति) शामिल हैं।[4][5]
आंशिक परिवर्तन
हालाँकि किसी सबसेट के किसी भी फ़ंक्शन के लिए ट्रांसफ़ॉर्मेशन शब्द का उपयोग करना आम बात है (विशेषकर परिवर्तन अर्धसमूह और समान जैसे शब्दों में), शब्दावली परंपरा का एक वैकल्पिक रूप मौजूद है जिसमें ट्रांसफ़ॉर्मेशन शब्द केवल आक्षेपों के लिए आरक्षित है। जब परिवर्तन की ऐसी संकीर्ण धारणा को आंशिक कार्यों के लिए सामान्यीकृत किया जाता है, तो आंशिक परिवर्तन एक फ़ंक्शन एफ होता है: ए → बी, जहां ए और बी दोनों होते हैं ' कुछ समुच्चय X के उपसमुच्चय हैं।[6]
बीजगणितीय संरचनाएँ
किसी दिए गए आधार सेट पर सभी परिवर्तनों का सेट, फ़ंक्शन संरचना के साथ मिलकर, एक नियमित अर्धसमूह बनाता है।
कॉम्बिनेटरिक्स
प्रमुखता n के एक सीमित सेट के लिए, n हैंn परिवर्तन और (n+1)nआंशिक परिवर्तन।[7]
यह भी देखें
- समन्वय परिवर्तन
- डेटा परिवर्तन (सांख्यिकी)
- ज्यामितीय परिवर्तन
- असीम परिवर्तन
- रैखिक परिवर्तन
- कठोर परिवर्तन
- परिवर्तन ज्यामिति
- परिवर्तन अर्धसमूह
- परिवर्तन समूह
- परिवर्तन मैट्रिक्स
संदर्भ
- ↑ Olexandr Ganyushkin; Volodymyr Mazorchuk (2008). Classical Finite Transformation Semigroups: An Introduction. Springer Science & Business Media. p. 1. ISBN 978-1-84800-281-4.
- ↑ Pierre A. Grillet (1995). Semigroups: An Introduction to the Structure Theory. CRC Press. p. 2. ISBN 978-0-8247-9662-4.
- ↑ Wilkinson, Leland & Graham (2005). ग्राफ़िक्स का व्याकरण (2nd ed.). Springer. p. 29. ISBN 978-0-387-24544-7.
{{cite book}}
: CS1 maint: uses authors parameter (link) - ↑ "परिवर्तनों". www.mathsisfun.com. Retrieved 2019-12-13.
- ↑ "गणित में परिवर्तन के प्रकार". Basic-mathematics.com. Retrieved 2019-12-13.
- ↑ Christopher Hollings (2014). Mathematics across the Iron Curtain: A History of the Algebraic Theory of Semigroups. American Mathematical Society. p. 251. ISBN 978-1-4704-1493-1.
- ↑ Olexandr Ganyushkin; Volodymyr Mazorchuk (2008). Classical Finite Transformation Semigroups: An Introduction. Springer Science & Business Media. p. 2. ISBN 978-1-84800-281-4.
बाहरी संबंध
- Media related to रूपांतरण (फलन) at Wikimedia Commons