लघु (रैखिक बीजगणित)

From Vigyanwiki
Revision as of 21:22, 22 July 2023 by alpha>Artiverma

रैखिक बीजगणित में, आव्यूह (गणित) A का लघु, A की अधिक पंक्तियों और स्तंभों को विस्थापित कर A से विभक्त किये गए कुछ छोटे वर्ग आव्यूह का निर्धारक होता है। वर्ग आव्यूहों (प्रथम लघु) से केवल पंक्ति और स्तंभ को विस्थापित करके प्राप्त किए गए लघु की आवश्यकता आव्यूह सहगुणकों की गणना के लिए होती है, जो विनिमय में वर्ग आव्यूहों के निर्धारक और व्युत्क्रम आव्यूह दोनों की गणना के लिए उपयोगी होते हैं। परिभाषा में यह आवश्यकता अधिकांशतः त्याग दी जाती है कि वर्ग आव्यूह मूल आव्यूह से छोटा होता है।

परिभाषा और चित्रण

प्रथम लघु

यदि A वर्ग आव्यूह है, तो i th पंक्ति और j th स्तंभ में प्रविष्टि का लघु (जिसे (i, j) लघु, या प्रथम लघु भी कहा जाता है[1]) i th पंक्ति और j th स्तंभ को विस्थापित करके गठित अर्धआव्यूह का निर्धारक है। इस संख्या को अधिकांशतः Mi,j से दर्शाया जाता है। (i, j) सहगुणक लघु को गुणा करके प्राप्त किया जाता है।

इन परिभाषाओं को स्पष्ट करने के लिए, निम्नलिखित 3 बटा 3 आव्यूह पर विचार करें,

लघु M2,3 और सहगुणक C2,3, की गणना करने के लिए, हम पंक्ति 2 और स्तंभ 3 को विस्थापित करके उपरोक्त आव्यूह के निर्धारक का अन्वेषण करते हैं।

तो (2,3) प्रविष्टि का सहगुणक है-

सामान्य परिभाषा

मान लीजिए A, m × n आव्यूह है और k 0 < km, और kn के साथ एक पूर्णांक है '. A k × k A का लघु, जिसे A के क्रम k का लघु निर्धारक भी कहा जाता है या, यदि m = n, (' 'nk)A का वां लघु निर्धारक (निर्धारक शब्द अधिकांशतः छोड़ दिया जाता है, और कभी-कभी ऑर्डर के बजाय डिग्री शब्द का उपयोग किया जाता है) k × का निर्धारक है k आव्यूह m-k पंक्तियों और n-k कॉलम को हटाकर A से प्राप्त किया गया है। कभी-कभी इस शब्द का उपयोग उपरोक्त A से प्राप्त k × k आव्यूह को संदर्भित करने के लिए किया जाता है ('mk पंक्तियों और n को हटाकर) k कॉलम), लेकिन इस आव्यूह को A के (वर्ग) सबआव्यूह के रूप में संदर्भित किया जाना चाहिए, इस आव्यूह के निर्धारक को संदर्भित करने के लिए लघु शब्द को छोड़ दिया जाना चाहिए। उपरोक्त आव्यूह ए के लिए, कुल हैं k × k आकार के नाबालिग। क्रम शून्य के लघु को अधिकांशतः 1 के रूप में परिभाषित किया जाता है। एक वर्ग आव्यूह के लिए, शून्यवां लघु केवल आव्यूह का निर्धारक होता है।[2][3]

होने देना और अनुक्रमित अनुक्रमों का क्रम दिया जाए (प्राकृतिक क्रम में, जैसा कि नाबालिगों के बारे में बात करते समय हमेशा माना जाता है जब तक कि अन्यथा न कहा गया हो), उन्हें क्रमशः I और J कहें। नाबालिग अनुक्रमणिका के इन विकल्पों के अनुरूप निरूपित किया जाता है या या या या या (जहां स्रोत के आधार पर, सूचकांक I, आदि के अनुक्रम को दर्शाता है। इसके अलावा, साहित्य में उपयोग में आने वाले दो प्रकार के संकेत हैं: सूचकांक I और J के क्रमबद्ध अनुक्रमों से जुड़े छोटे द्वारा, कुछ लेखक[4] आव्यूह के निर्धारक का मतलब है जो उपरोक्त के रूप में बनता है, मूल आव्यूह के तत्वों को उन पंक्तियों से लेकर जिनके सूचकांक I में हैं और जिन स्तंभों के सूचकांक J में हैं, जबकि कुछ अन्य लेखकों का मतलब I और J से जुड़े एक नाबालिग से है I में पंक्तियों और J में स्तंभों को हटाकर मूल आव्यूह से बने आव्यूह का निर्धारक।[2]किस नोटेशन का उपयोग किया गया है इसकी जांच हमेशा संबंधित स्रोत से की जानी चाहिए। इस लेख में, हम I की पंक्तियों और J के स्तंभों से तत्वों को चुनने की समावेशी परिभाषा का उपयोग करते हैं। असाधारण मामला ऊपर वर्णित पहले लघु या (i, j)-लघु का मामला है; उस मामले में, विशेष अर्थ साहित्य में हर जगह मानक है और इस लेख में भी इसका उपयोग किया गया है।

पूरक

पूरक, बीijk...,pqr..., एक नाबालिग का, एमijk...,pqr..., एक वर्ग आव्यूह का, 'ए', आव्यूह 'ए' के ​​निर्धारक द्वारा बनता है जिसमें से एम से जुड़ी सभी पंक्तियाँ (आईजेके...) और कॉलम (पीक्यूआर...)ijk...,pqr...हटा दिया गया है। किसी तत्व के प्रथम अवयस्क का पूरक aijबस वह तत्व है.[5]

नाबालिगों और सहगुणकों के अनुप्रयोग

निर्धारक का सहगुणक विस्तार

लाप्लास विस्तार में सहगुणकों को प्रमुखता से दर्शाया गया है|निर्धारकों के विस्तार के लिए लाप्लास का सूत्र, जो छोटे निर्धारकों के संदर्भ में बड़े निर्धारकों की गणना करने की एक विधि है। एक दिया गया n × n आव्यूह , ए का निर्धारक, जिसे डेट (ए) कहा जाता है, को आव्यूह की किसी भी पंक्ति या स्तंभ के सहगुणकों के योग के रूप में लिखा जा सकता है, जो उन्हें उत्पन्न करने वाली प्रविष्टियों से गुणा किया जाता है। दूसरे शब्दों में, परिभाषित करना फिर जे के साथ सहगुणक विस्तारवां कॉलम देता है:

I के साथ सहगुणक विस्तारवीं पंक्ति देती है:

आव्यूह का व्युत्क्रम

क्रैमर के नियम का उपयोग करके इसके सहगुणकों की गणना करके कोई व्युत्क्रमणीय आव्यूह का व्युत्क्रम इस प्रकार लिख सकता है। उलटा आव्यूह A के सभी सहगुणकों द्वारा निर्मित आव्यूह को सहगुणक आव्यूह कहा जाता है (जिसे सहगुणकों का आव्यूह भी कहा जाता है या, कभी-कभी, कोआव्यूह भी कहा जाता है):

फिर A का व्युत्क्रम A के निर्धारक के व्युत्क्रम से गुणा सहगुणक आव्यूह का स्थानान्तरण है:

सहगुणक आव्यूह के स्थानान्तरण को 'ए' का सहायक आव्यूह (जिसे शास्त्रीय सहायक भी कहा जाता है) कहा जाता है।

उपरोक्त सूत्र को निम्नानुसार सामान्यीकृत किया जा सकता है: चलो और अनुक्रमितों के क्रम (प्राकृतिक क्रम में) दिए जाएं (यहां A एक n × n आव्यूह है)। तब[6]

जहां I', J', I, J के पूरक सूचकांकों के क्रमबद्ध अनुक्रम को दर्शाते हैं (सूचकांक परिमाण के प्राकृतिक क्रम में हैं, जैसा कि ऊपर है), ताकि प्रत्येक सूचकांक 1, ..., n या तो I या I में बिल्कुल एक बार दिखाई दे। ', लेकिन दोनों में नहीं (समान रूप से जे और जे' के लिए) और इंडेक्स सेट I की पंक्तियों और इंडेक्स सेट J के कॉलम को चुनकर गठित ए के सबआव्यूह के निर्धारक को दर्शाता है। भी, . वेज उत्पाद का उपयोग करके एक सरल प्रमाण दिया जा सकता है। वास्तव में,

कहाँ आधार सदिश हैं। ए द्वारा दोनों तरफ से कार्य करने पर एक मिलता है

संकेत पर काम किया जा सकता है , इसलिए चिह्न I और J में तत्वों के योग से निर्धारित होता है।

अन्य अनुप्रयोग

वास्तविक संख्या प्रविष्टियों (या किसी अन्य क्षेत्र (गणित) से प्रविष्टियाँ) और रैंक (आव्यूह सिद्धांत) r के साथ एक m × n आव्यूह दिया गया है, तो कम से कम एक गैर-शून्य r × r लघु मौजूद है, जबकि सभी बड़े लघु शून्य हैं।

हम अवयस्कों के लिए निम्नलिखित नोटेशन का उपयोग करेंगे: यदि 'ए' एक एम × एन आव्यूह है, तो मैं के तत्वों के साथ {1,...,एम} का एक उपसमुच्चय है, और जे, {1,... का एक उपसमुच्चय है। ,n} k तत्वों के साथ, फिर हम लिखते हैं ['A']I,J के लिए k × k A का लघु जो I में इंडेक्स वाली पंक्तियों और J में इंडेक्स वाले कॉलम से मेल खाता है।

  • यदि मैं = जे, तो [ए]I,J प्रधान अवयस्क कहा जाता है।
  • यदि आव्यूह जो एक प्रिंसिपल लघु से मेल खाता है वह एक वर्गाकार ऊपरी-बाएँ आव्यूह है (गणित) # बड़े आव्यूह का सबआव्यूह (यानी, इसमें 1 से k तक पंक्तियों और स्तंभों में आव्यूह तत्व होते हैं, जिसे एक अग्रणी प्रिंसिपल सबआव्यूह के रूप में भी जाना जाता है) ), तो प्रिंसिपल लघु को लीडिंग प्रिंसिपल लघु (ऑर्डर k का) या कॉर्नर (प्रिंसिपल) लघु (ऑर्डर k का) कहा जाता है।[3] n × n वर्ग आव्यूह के लिए, n प्रमुख प्रमुख अवयस्क हैं।
  • आव्यूह का एक बुनियादी लघु एक वर्ग सबआव्यूह का निर्धारक होता है जो गैर-शून्य निर्धारक के साथ अधिकतम आकार का होता है।[3]* हर्मिटियन आव्यूह के लिए, प्रमुख प्रमुख नाबालिगों का उपयोग सकारात्मक-निश्चित आव्यूह के परीक्षण के लिए किया जा सकता है और प्रमुख नाबालिगों का उपयोग सकारात्मक-अर्ध-निश्चित आव्यूह के परीक्षण के लिए किया जा सकता है। अधिक विवरण के लिए सिल्वेस्टर का मानदंड देखें।

साधारण आव्यूह गुणन के लिए सूत्र और दो आव्यूह के उत्पाद के निर्धारक के लिए कॉची-बिनेट फॉर्मूला दोनों दो आव्यूह के उत्पाद के नाबालिगों के बारे में निम्नलिखित सामान्य कथन के विशेष मामले हैं। मान लीजिए कि A एक m × n आव्यूह है, B एक n × p आव्यूह है, I {1,..., का एक उपसमुच्चय है m} k तत्वों के साथ और J k तत्वों के साथ {1,...,p} का एक उपसमुच्चय है। तब

जहां योग k तत्वों के साथ {1,...,n} के सभी उपसमुच्चय K पर विस्तारित होता है। यह सूत्र कॉची-बिनेट सूत्र का सीधा विस्तार है।

बहुरेखीय बीजगणित दृष्टिकोण

वेज उत्पाद का उपयोग करते हुए, बहुरेखीय बीजगणित में लघुों का अधिक व्यवस्थित, बीजगणितीय उपचार दिया जाता है: आव्यूह के k-लघु, kth बाहरी पावर मैप में प्रविष्टियाँ हैं।

यदि आव्यूह के कॉलम को एक समय में एक साथ जोड़ा जाता है, तो k × k लघु परिणामी k-वेक्टर के घटकों के रूप में दिखाई देते हैं। उदाहरण के लिए, आव्यूह के 2 × 2 लघु्स

हैं −13 (पहली दो पंक्तियों से), −7 (पहली और आखिरी पंक्ति से), और 5 (अंतिम दो पंक्तियों से)। अब वेज उत्पाद पर विचार करें

जहां दो अभिव्यक्तियां हमारे आव्यूह के दो स्तंभों से मेल खाती हैं। वेज उत्पाद के गुणों का उपयोग करते हुए, अर्थात् यह द्विरेखीय मानचित्र और वैकल्पिक बहुरेखीय मानचित्र है,

और प्रतिसंक्रामकता,

हम इस अभिव्यक्ति को सरल बना सकते हैं

जहां गुणांक पहले गणना किए गए नाबालिगों से सहमत हैं।

विभिन्न संकेतन के बारे में एक टिप्पणी

कुछ पुस्तकों में सहगुणक के स्थान पर सहायक शब्द का प्रयोग किया जाता है।[7] इसके अलावा, इसे ए के रूप में दर्शाया गया हैij और सहगुणक के समान ही परिभाषित किया गया है:

इस नोटेशन का उपयोग करके व्युत्क्रम आव्यूह को इस प्रकार लिखा जाता है:

ध्यान रखें कि सहायक सहायक या सहायक नहीं है। आधुनिक शब्दावली में, आव्यूह का उप अधिकांशतः संबंधित सहायक संचालिका को संदर्भित करता है।

यह भी देखें

  • सबआव्यूह

संदर्भ

  1. Burnside, William Snow & Panton, Arthur William (1886) Theory of Equations: with an Introduction to the Theory of Binary Algebraic Form.
  2. 2.0 2.1 Elementary Matrix Algebra (Third edition), Franz E. Hohn, The Macmillan Company, 1973, ISBN 978-0-02-355950-1
  3. 3.0 3.1 3.2 "Minor". गणित का विश्वकोश.
  4. Linear Algebra and Geometry, Igor R. Shafarevich, Alexey O. Remizov, Springer-Verlag Berlin Heidelberg, 2013, ISBN 978-3-642-30993-9
  5. Bertha Jeffreys, Methods of Mathematical Physics, p.135, Cambridge University Press, 1999 ISBN 0-521-66402-0.
  6. Viktor Vasil_evich Prasolov (13 June 1994). रैखिक बीजगणित में समस्याएँ और प्रमेय. American Mathematical Soc. pp. 15–. ISBN 978-0-8218-0236-6.
  7. Felix Gantmacher, Theory of matrices (1st ed., original language is Russian), Moscow: State Publishing House of technical and theoretical literature, 1953, p.491,


बाहरी संबंध