स्केलिंग (ज्यामिति)

From Vigyanwiki
Revision as of 23:37, 27 January 2023 by alpha>Indicwiki (Created page with "{{Short description|Geometric transformation}} {{Use American English|date = April 2019}} {{More citations needed|date=April 2008}} File:Sierpinski triangle evolution.svg|th...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Sierpinski त्रिभुज के प्रत्येक पुनरावृत्ति में 1/2 के स्केल कारक द्वारा अगले पुनरावृत्ति से संबंधित त्रिभुज होते हैं

एफ़िन ज्यामिति में, समान स्केलिंग (या समदैशिक स्केलिंग[1]) एक रैखिक परिवर्तन है जो सभी दिशाओं में समान स्केल कारक द्वारा वस्तुओं को बढ़ाता है (बढ़ता है) या सिकुड़ता (कम करता है)। समान स्केलिंग का परिणाम मूल के समानता (ज्यामिति) (ज्यामितीय अर्थ में) है। 1 के पैमाने कारक की सामान्य रूप से अनुमति है, ताकि सर्वांगसमता (ज्यामिति) आकृतियों को भी समान के रूप में वर्गीकृत किया जा सके। एक समान स्केलिंग होती है, उदाहरण के लिए, जब किसी फोटोग्राफ को बड़ा या छोटा किया जाता है, या किसी भवन, कार, हवाई जहाज आदि का पैमाना मॉडल बनाते समय।

प्रत्येक अक्ष दिशा के लिए एक अलग पैमाने कारक के साथ अधिक सामान्य 'स्केलिंग' है। 'गैर-समान स्केलिंग' (एनिस्ट्रोपिक स्केलिंग') तब प्राप्त होता है जब स्केलिंग कारकों में से कम से कम एक अन्य से अलग होता है; एक विशेष मामला 'दिशात्मक स्केलिंग' या 'स्ट्रेचिंग' (एक दिशा में) है। असमान स्केलिंग से वस्तु का आकार बदल जाता है; उदा. एक वर्ग आयत में या समांतर चतुर्भुज में बदल सकता है यदि वर्ग की भुजाएँ स्केलिंग अक्षों के समानांतर नहीं हैं (अक्षों के समानांतर रेखाओं के बीच के कोण संरक्षित हैं, लेकिन सभी कोण नहीं हैं)। यह तब होता है, उदाहरण के लिए, जब एक दूर के बिलबोर्ड को एक तिरछे कोण से देखा जाता है, या जब एक सपाट वस्तु की छाया उस सतह पर पड़ती है जो इसके समानांतर नहीं होती है।

जब पैमाना कारक 1 से बड़ा होता है, (समान या गैर-समान) स्केलिंग को कभी-कभी 'विस्तार' या 'विस्तार' भी कहा जाता है। जब पैमाना गुणक 1 से छोटी कोई धनात्मक संख्या होती है, तो मापन को कभी-कभी 'संकुचन' या 'कमी' भी कहा जाता है।

सबसे सामान्य अर्थ में, स्केलिंग में वह मामला शामिल होता है जिसमें स्केलिंग की दिशा लंबवत नहीं होती है। इसमें वह मामला भी शामिल है जिसमें एक या एक से अधिक स्केल कारक शून्य के बराबर होते हैं (प्रोजेक्शन (रैखिक बीजगणित)), और एक या अधिक नकारात्मक स्केल कारकों का मामला (-1 द्वारा एक दिशात्मक स्केलिंग एक प्रतिबिंब (गणित) के बराबर है) .

स्केलिंग एक रैखिक परिवर्तन है, और समरूप परिवर्तन का एक विशेष मामला (एक बिंदु के बारे में स्केलिंग)। ज्यादातर मामलों में, होमोथेटिक परिवर्तन गैर-रैखिक परिवर्तन होते हैं।

यूनिफ़ॉर्म स्केलिंग

Sierpinski त्रिभुज के प्रत्येक पुनरावृत्ति में 1/2 के स्केल कारक द्वारा अगले पुनरावृत्ति से संबंधित त्रिभुज होते हैं

एक स्केल फ़ैक्टर आमतौर पर एक दशमलव होता है जो कुछ मात्रा को मापता या गुणा करता है। समीकरण में y = Cx, C x का पैमाना कारक है। C भी x का गुणांक है, और इसे y से x के आनुपातिकता का स्थिरांक कहा जा सकता है। उदाहरण के लिए, दोहरीकरण दूरी दूरी के लिए दो के पैमाने कारक से मेल खाती है, जबकि एक केक को आधे में काटने से एक आधे की मात्रा के लिए पैमाने कारक के साथ टुकड़े हो जाते हैं। इसके लिए मूल समीकरण इमेज ओवर प्रीइमेज है।

मापन के क्षेत्र में, किसी उपकरण के पैमाने कारक को कभी-कभी संवेदनशीलता कहा जाता है। दो समान ज्यामितीय आकृतियों में किन्हीं दो संगत लंबाई के अनुपात को भी पैमाना कहा जाता है।

मैट्रिक्स प्रतिनिधित्व

स्केलिंग मैट्रिक्स (गणित) द्वारा स्केलिंग का प्रतिनिधित्व किया जा सकता है। वेक्टर (ज्यामितीय) v = (v) द्वारा किसी ऑब्जेक्ट को स्केल करने के लिएx, मेंy, मेंz), प्रत्येक बिंदु पी = (पीx, पीy, पीz) को इस स्केलिंग मैट्रिक्स से गुणा करना होगा:

जैसा कि नीचे दिखाया गया है, गुणन अपेक्षित परिणाम देगा:

इस तरह की स्केलिंग किसी वस्तु के व्यास को स्केल कारकों के बीच एक कारक द्वारा, दो स्केल कारकों के सबसे छोटे और सबसे बड़े उत्पाद के बीच एक कारक द्वारा और तीनों के उत्पाद द्वारा आयतन को बदल देती है।

स्केलिंग एक समान है अगर और केवल अगर स्केलिंग कारक समान हैं (vx = विy = विz). यदि स्केल कारकों में से एक को छोड़कर सभी 1 के बराबर हैं, तो हमारे पास दिशात्मक स्केलिंग है।

मामले में जहां वीx = विy = विz = k, स्केलिंग किसी भी सतह के क्षेत्रफल को k के गुणक से बढ़ा देता है2 और k के कारक द्वारा किसी ठोस वस्तु का आयतन3</उप>।

स्वैच्छिक आयामों में स्केलिंग

में -आयामी स्थान , एक कारक द्वारा समान स्केलिंग के साथ स्केलर गुणन द्वारा पूरा किया जाता है , अर्थात्, प्रत्येक बिंदु के प्रत्येक निर्देशांक को गुणा करके . रैखिक परिवर्तन के एक विशेष मामले के रूप में, यह प्रत्येक बिंदु को एक विकर्ण मैट्रिक्स के साथ गुणा करके भी प्राप्त किया जा सकता है (स्तंभ सदिश के रूप में देखा जाता है) जिसकी विकर्ण पर प्रविष्टियाँ सभी के बराबर हैं , अर्थात् .

गैर-समान स्केलिंग किसी सममित मैट्रिक्स के साथ गुणन द्वारा पूरा किया जाता है। मैट्रिक्स के eigenvalues ​​​​स्केल कारक हैं, और संबंधित eigenvectors कुल्हाड़ियों हैं जिनके साथ प्रत्येक स्केल कारक लागू होता है। एक विशेष मामला एक विकर्ण मैट्रिक्स है, मनमाना संख्या के साथ विकर्ण के साथ: स्केलिंग के अक्ष तब समन्वय अक्ष होते हैं, और प्रत्येक अक्ष के साथ परिवर्तन स्केल होते हैं कारक द्वारा .

गैर-शून्य स्केल कारक के साथ समान स्केलिंग में, सभी गैर-शून्य वैक्टर स्केलिंग कारक के संकेत के आधार पर अपनी दिशा (जैसा मूल से देखा जाता है) बनाए रखते हैं, या सभी की दिशा उलट जाती है। गैर-समान स्केलिंग में केवल एक egenspace से संबंधित वैक्टर ही अपनी दिशा बनाए रखेंगे। एक वेक्टर जो दो या दो से अधिक गैर-शून्य वैक्टरों का योग है जो अलग-अलग ईजेनस्पेस से संबंधित है, सबसे बड़े आइगेनवैल्यू के साथ ईजेनस्पेस की ओर झुका होगा।

सजातीय निर्देशांकों का उपयोग करना

प्रोजेक्टिव ज्यामिति में, अक्सर कंप्यूटर चित्रलेख में उपयोग किया जाता है, सजातीय निर्देशांक का उपयोग करके बिंदुओं का प्रतिनिधित्व किया जाता है। वेक्टर (ज्यामितीय) v = (v) द्वारा किसी ऑब्जेक्ट को स्केल करने के लिएx, मेंy, मेंz), प्रत्येक सजातीय समन्वय वेक्टर पी = (पीx, पीy, पीz, 1) इस प्रक्षेपण परिवर्तन मैट्रिक्स के साथ गुणा करने की आवश्यकता होगी:

जैसा कि नीचे दिखाया गया है, गुणन अपेक्षित परिणाम देगा:

चूंकि एक सजातीय समन्वय के अंतिम घटक को अन्य तीन घटकों के भाजक के रूप में देखा जा सकता है, इस स्केलिंग मैट्रिक्स का उपयोग करके एक सामान्य कारक (समान स्केलिंग) द्वारा एक समान स्केलिंग को पूरा किया जा सकता है:

प्रत्येक सदिश के लिए p = (px, पीy, पीz, 1) हमारे पास होगा

जो बराबर होगा


कार्य फैलाव और संकुचन

एक बिंदु दिया फैलाव इसे बिंदु से जोड़ता है समीकरणों के माध्यम से

के लिए .

इसलिए, एक समारोह दिया विस्फारित फलन का समीकरण है


विशेष मामले

यदि , परिवर्तन क्षैतिज है; जब , यह एक फैलाव है, कब , यह एक संकुचन है।

यदि , परिवर्तन लंबवत है; जब यह एक फैलाव है, कब , यह एक संकुचन है।

यदि या , परिवर्तन एक निचोड़ मानचित्रण है।

यह भी देखें

फुटनोट्स

  1. Durand; Cutler. "परिवर्तनों" (PowerPoint). Massachusetts Institute of Technology. Retrieved 12 September 2008.


बाहरी कड़ियाँ