आवागमन मैट्रिसेस
From Vigyanwiki
रैखिक बीजगणित में, दो मैट्रिक्स (गणित) और कहा जाता है कि यदि आवागमन करना है , या समकक्ष यदि उनका कम्यूटेटर शून्य है. मैट्रिक्स का एक सेट (गणित)। ऐसा कहा जाता है कि यदि वे जोड़ीदार यात्रा करते हैं, तो यात्रा करते हैं, जिसका अर्थ है कि सेट में मैट्रिक्स की प्रत्येक जोड़ी एक दूसरे के साथ यात्रा करती है।
विशेषताएँ और गुण
- कम्यूटिंग मैट्रिसेस एक-दूसरे के eigenspace को सुरक्षित रखते हैं।[1] परिणामस्वरूप, बीजगणितीय रूप से बंद क्षेत्र पर कम्यूटिंग मैट्रिक्स एक साथ त्रिकोणीय होते हैं; अर्थात्, ऐसे आधार (रैखिक बीजगणित) हैं जिन पर वे दोनों ऊपरी त्रिकोणीय मैट्रिक्स हैं। दूसरे शब्दों में, यदि आवागमन, एक समानता मैट्रिक्स मौजूद है ऐसा है कि सभी के लिए ऊपरी त्रिकोणीय है . उलटा (तर्क) आवश्यक रूप से सत्य नहीं है, जैसा कि निम्नलिखित प्रतिउदाहरण से पता चलता है:
- हालाँकि, यदि दो मैट्रिक्स के कम्यूटेटर का वर्ग शून्य है, अर्थात, , तो विपरीत सत्य है।[2]
- दो विकर्णीय आव्यूह और आना-जाना () यदि वे एक साथ विकर्णीय हैं (अर्थात्, एक व्युत्क्रमणीय मैट्रिक्स मौजूद है ऐसे कि दोनों और विकर्ण मैट्रिक्स हैं)।[3]: p. 64 इसका उलटा भी सच है; अर्थात्, यदि दो विकर्णीय आव्यूह गति करते हैं, तो वे एक साथ विकर्णीय होते हैं।[4] लेकिन यदि आप किन्हीं दो आव्यूहों को लेते हैं जो आवागमन करते हैं (और यह नहीं मानते हैं कि वे दो विकर्ण आव्यूह हैं) तो वे पहले से ही एक साथ विकर्णीय हैं यदि उनमें से एक आव्यूह में कोई एकाधिक eigenvalues नहीं है।[5]
- अगर और आवागमन, उनके पास एक सामान्य आइजनवेक्टर है। अगर अलग-अलग eigenvalues हैं, और और फिर आवागमन के eigenvectors हैं के eigenvectors.
- यदि किसी आव्यूह में यह गुण है कि उसका न्यूनतम बहुपद उसके विशिष्ट बहुपद के साथ मेल खाता है (अर्थात्, इसकी अधिकतम डिग्री होती है), जो विशेष रूप से तब होता है जब विशेषता बहुपद में केवल बहुलता होती है (गणित)#a के मूल की बहुलता बहुपद, तो दूसरे आव्यूह को पहले में बहुपद के रूप में लिखा जा सकता है।
- एक साथ त्रिकोणीयता के प्रत्यक्ष परिणाम के रूप में, दो आने वाले जटिल संख्या मैट्रिक्स ए, बी के eigenvalues को उनकी बीजगणितीय बहुलता (उनके विशिष्ट बहुपदों की जड़ों के एकाधिक सेट) के साथ मिलान किया जा सकता है इस प्रकार कि किसी भी बहुपद के eigenvalues का बहुसमूह दो आव्यूहों में मानों का बहुसमूह है . . . . यह प्रमेय फर्डिनेंड जॉर्ज फ्रोबेनियस के कारण है।[6]
- दो हर्मिटियन मैट्रिक्स मैट्रिक्स आवागमन करते हैं यदि उनके ईगेंसस्पेस मेल खाते हैं। विशेष रूप से, एकाधिक आइगेनवैल्यू के बिना दो हर्मिटियन मैट्रिसेस, यदि वे आइजेनवेक्टरों का एक ही सेट साझा करते हैं, तो आवागमन करते हैं। यह दोनों आव्यूहों के eigenvalue अपघटन पर विचार करने के बाद होता है। होने देना और दो हर्मिटियन मैट्रिसेस बनें। और जब उन्हें इस प्रकार लिखा जा सकता है तो उनके पास सामान्य eigenspaces होते हैं और . इसके बाद यह अनुसरण करता है
- दो आव्यूहों के आवागमन का गुण सकर्मक संबंध नहीं है: एक आव्यूह दोनों के साथ आवागमन कर सकते हैं और , और अभी भी और एक दूसरे के साथ आवागमन न करें. उदाहरण के तौर पर, पहचान मैट्रिक्स सभी आव्यूहों के साथ संचारित होता है, जिनके बीच सभी आवागमन नहीं करते हैं। यदि माना गया मैट्रिक्स का सेट कई आइगेनवैल्यू के बिना हर्मिटियन मैट्रिसेस तक ही सीमित है, तो आइगेनवेक्टर के संदर्भ में लक्षण वर्णन के परिणामस्वरूप, कम्यूटेटिविटी सकर्मक है।
- लाई का प्रमेय, जो दर्शाता है कि हल करने योग्य लाई बीजगणित का कोई भी लाई बीजगणित प्रतिनिधित्व एक साथ ऊपरी त्रिकोणीय है, इसे सामान्यीकरण के रूप में देखा जा सकता है।
- एक n × n मैट्रिक्स प्रत्येक अन्य n × n मैट्रिक्स के साथ परिवर्तन होता है यदि और केवल यदि यह एक अदिश मैट्रिक्स है, अर्थात फॉर्म का एक मैट्रिक्स है , कहाँ n × n पहचान मैट्रिक्स है और एक अदिश राशि है. दूसरे शब्दों में, गुणन के अंतर्गत n × n आव्यूहों के समूह (गणित) का केंद्र (समूह सिद्धांत) अदिश आव्यूहों का उपसमूह है।
उदाहरण
- पहचान मैट्रिक्स सभी मैट्रिक्स के साथ चलता है।
- जॉर्डन ब्लॉक ऊपरी त्रिकोणीय मैट्रिक्स के साथ चलते हैं जिनका बैंड के साथ समान मूल्य होता है।
- यदि दो सममित मैट्रिक्स का उत्पाद सममित है, तो उन्हें कम्यूट करना होगा। इसका मतलब यह भी है कि प्रत्येक विकर्ण मैट्रिक्स अन्य सभी विकर्ण मैट्रिक्स के साथ संचार करता है।[7][8]
- परिसंचारी मैट्रिक्स आवागमन। वे एक क्रमविनिमेय वलय बनाते हैं क्योंकि दो परिसंचारी आव्यूहों का योग परिवर्ती होता है।
इतिहास
कम्यूटिंग मैट्रिसेस की धारणा आर्थर केली द्वारा मैट्रिसेस के सिद्धांत पर अपने संस्मरण में पेश की गई थी, जिसने मैट्रिसेस का पहला स्वयंसिद्धीकरण भी प्रदान किया था। उन पर पहला महत्वपूर्ण परिणाम 1878 में फर्डिनेंड जॉर्ज फ्रोबेनियस का उपरोक्त परिणाम साबित हुआ।[9]
संदर्भ
- ↑ Horn, Roger A.; Johnson, Charles R. (2012). मैट्रिक्स विश्लेषण. Cambridge University Press. p. 70. ISBN 9780521839402.
- ↑ Horn, Roger A.; Johnson, Charles R. (2012). मैट्रिक्स विश्लेषण. Cambridge University Press. p. 127. ISBN 9780521839402.
- ↑ Horn, Roger A.; Johnson, Charles R. (2013). मैट्रिक्स विश्लेषण, दूसरा संस्करण. Cambridge University Press. ISBN 9780521839402.
- ↑ Without loss of generality, one may suppose that the first matrix is diagonal. In this case, commutativity implies that if an entry of the second matrix is nonzero, then After a permutation of rows and columns, the two matrices become simultaneously block diagonal. In each block, the first matrix is the product of an identity matrix, and the second one is a diagonalizable matrix. So, diagonalizing the blocks of the second matrix does change the first matrix, and allows a simultaneous diagonalization.
- ↑ "Proofs Homework Set 10 MATH 217 — WINTER 2011" (PDF). Retrieved 10 July 2022.
- ↑ Frobenius, G. (1877). "रैखिक प्रतिस्थापन और द्विरेखीय रूपों के बारे में". Journal für die reine und angewandte Mathematik. 84: 1–63.
- ↑ "Do Diagonal Matrices Always Commute?". Stack Exchange. March 15, 2016. Retrieved August 4, 2018.
- ↑ "Linear Algebra WebNotes part 2". math.vanderbilt.edu. Retrieved 2022-07-10.
- ↑ Drazin, M. (1951), "Some Generalizations of Matrix Commutativity", Proceedings of the London Mathematical Society, 3, 1 (1): 222–231, doi:10.1112/plms/s3-1.1.222