क्वांटम छद्म टेलीपैथी
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
क्वांटम छद्म-टेलीपैथी तथ्य यह है कि असममित जानकारी वाले कुछ बायेसियन खेलों में, जिन खिलाड़ियों के पास उलझी हुई क्वांटम स्थिति में एक साझा भौतिक प्रणाली तक पहुंच होती है, और जो योजनायों को निष्पादित करने में सक्षम होते हैं जो उलझी हुई भौतिक प्रणाली पर किए गए मापों पर निर्भर होते हैं, उलझे हुए क्वांटम सिस्टम तक पहुंच के बिना खिलाड़ियों द्वारा एक ही गेम के किसी भी मिश्रित-योजना नैश संतुलन में प्राप्त किए जा सकने वाले संतुलन में उच्च अपेक्षित भुगतान प्राप्त करने में सक्षम हैं।
अपने 1999 के पेपर में,[1] गाइल्स ब्रासार्ड, रिचर्ड क्लेव और एलेन टैप ने प्रदर्शित किया कि क्वांटम छद्म-टेलीपैथी कुछ खेलों में खिलाड़ियों को ऐसे परिणाम प्राप्त करने की स्वीकृति देती है जो अन्यथा केवल तभी संभव होता जब प्रतिभागियों को खेल के दौरान संवाद करने की स्वीकृति दी जाती।
इस घटना को क्वांटम छद्म-टेलीपैथी के रूप में संदर्भित किया जाने लगा[2] उपसर्ग छद्म के साथ इस तथ्य का जिक्र है कि क्वांटम छद्म-टेलीपैथी में किसी भी पक्ष के बीच सूचना का आदान-प्रदान शामिल नहीं है। इसके बजाय, क्वांटम छद्म टेलीपैथी कुछ परिस्थितियों में पार्टियों के लिए सूचनाओं के आदान-प्रदान की आवश्यकता को दूर कर देती है।
कुछ परिस्थितियों में पारस्परिक रूप से लाभप्रद परिणाम प्राप्त करने के लिए संचार में संलग्न होने की आवश्यकता को हटाकर, क्वांटम छद्म-टेलीपैथी उपयोगी हो सकती है यदि किसी खेल में कुछ प्रतिभागियों को कई प्रकाश वर्ष से अलग किया गया हो, जिसका अर्थ है कि उनके बीच संचार में कई साल लगेंगे। यह क्वांटम गैर-स्थानीयता के स्थूल निहितार्थ का एक उदाहरण होगा।
क्वांटम छद्म टेलीपैथी का उपयोग आम तौर पर क्वांटम यांत्रिकी की गैर-स्थानीय विशेषताओं को प्रदर्शित करने के लिए एक विचार प्रयोग के रूप में किया जाता है। हालाँकि, क्वांटम छद्म टेलीपैथी एक वास्तविक दुनिया की घटना है जिसे प्रयोगात्मक रूप से सत्यापित किया जा सकता है। इस प्रकार यह बेल असमानता उल्लंघनों की प्रायोगिक पुष्टि का एक विशेष रूप से उल्लेखनीय उदाहरण है।
असममित जानकारी का खेल
बायेसियन गेम एक ऐसा गेम है जिसमें दोनों खिलाड़ियों के पास कुछ मापदंडों के मूल्य के संबंध में अपूर्ण जानकारी होती है। बायेसियन गेम में कभी-कभी ऐसा होता है कि कम से कम कुछ खिलाड़ियों के लिए, नैश संतुलन में प्राप्त होने वाली उच्चतम अपेक्षित अदायगी उससे कम होती है जिसे हासिल किया जा सकता था यदि अपूर्ण जानकारी न होती। असममित जानकारी अपूर्ण जानकारी का एक विशेष मामला है, जिसमें विभिन्न खिलाड़ी कुछ मापदंडों के मूल्य के संबंध में अपने ज्ञान के संदर्भ में भिन्न होते हैं।
असममित जानकारी के शास्त्रीय बायेसियन खेलों में एक आम धारणा यह है कि खेल प्रारम्भ होने से पहले सभी खिलाड़ी कुछ महत्वपूर्ण मापदंडों के मूल्यों से अनजान होते हैं। एक बार खेल प्रारम्भ होने पर, विभिन्न खिलाड़ियों को विभिन्न मापदंडों के मूल्य के बारे में जानकारी प्राप्त होती है। हालाँकि, एक बार खेल प्रारम्भ होने के बाद, खिलाड़ियों को संवाद करने से मना किया जाता है और परिणामस्वरूप वे खेल के मापदंडों के संबंध में सामूहिक रूप से सम्मिलित जानकारी का आदान-प्रदान करने में असमर्थ होते हैं।
इस धारणा का एक महत्वपूर्ण निहितार्थ है: भले ही खिलाड़ी खेल प्रारम्भ होने से पहले योजनायों पर संवाद करने और चर्चा करने में सक्षम हों, इससे किसी भी खिलाड़ी के अपेक्षित लाभ में वृद्धि नहीं होगी, क्योंकि अज्ञात मापदंडों के बारे में महत्वपूर्ण जानकारी अभी तक खेल के प्रतिभागियों को 'प्रकट' नहीं की गई है। हालाँकि, यदि खेल को संशोधित किया जाना था, ताकि खिलाड़ियों को खेल प्रारम्भ होने के बाद संवाद करने की स्वीकृति दी जाए, एक बार प्रत्येक खिलाड़ी को कुछ अज्ञात मापदंडों के मूल्य के बारे में कुछ जानकारी प्राप्त हो जाए, तो खेल के प्रतिभागियों के लिए यह संभव हो सकता है एक नैश संतुलन प्राप्त करें जो संचार के अभाव में प्राप्त होने वाले किसी भी नैश संतुलन के लिए पेरेटो इष्टतम है।
क्वांटम टेलीपैथी का महत्वपूर्ण निहितार्थ यह है कि यद्यपि असममित जानकारी के बायेसियन गेम प्रारम्भ होने से पहले संचार से संतुलन में सुधार नहीं होता है, लेकिन यह सिद्ध किया जा सकता है कि कुछ बायेसियन गेम में, गेम प्रारम्भ होने से पहले खिलाड़ियों को उलझी हुई क्वैबिट का आदान-प्रदान करने की स्वीकृति मिल सकती है। एक नैश संतुलन प्राप्त करें जो अन्यथा केवल तभी प्राप्त किया जा सकेगा यदि इन-गेम संचार की स्वीकृति दी गई हो।
मैजिक स्क्वायर गेम
क्वांटम छद्म-टेलीपैथी का एक उदाहरण जादू वर्ग गेम में देखा जा सकता है, जिसे एडन कैबेलो और पी.के. द्वारा प्रस्तुत किया गया था। अरविंद एन. डेविड मर्मिन और एशर पेरेज़ के पिछले काम पर आधारित है।[3][4][5]
इस गेम में दो खिलाड़ी हैं, ऐलिस और बॉब। खेल की शुरुआत में ही ऐलिस और बॉब अलग हो जाते हैं। अलग होने के बाद उनके बीच बातचीत संभव नहीं है. खेल के लिए आवश्यक है कि ऐलिस प्लस और माइनस चिह्नों के साथ 3×3 तालिका की एक पंक्ति और बॉब एक कॉलम भरें।
खेल प्रारम्भ होने से पहले, ऐलिस को नहीं पता कि उसे तालिका की कौन सी पंक्ति भरनी होगी। इसी प्रकार, बॉब को भी नहीं पता कि उसे कौन सा कॉलम भरना होगा।
दोनों खिलाड़ियों के अलग होने के बाद, ऐलिस को बेतरतीब ढंग से तालिका की एक पंक्ति सौंपी गई और उसे प्लस और माइनस चिह्नों से भरने के लिए कहा गया। इसी प्रकार, बॉब को यादृच्छिक रूप से तालिका का एक कॉलम सौंपा गया है और इसे प्लस और माइनस चिह्नों से भरने के लिए कहा गया है।
खिलाड़ी निम्नलिखित आवश्यकता के अधीन हैं: ऐलिस को अपनी पंक्ति इस प्रकार भरनी होगी कि उस पंक्ति में ऋण चिह्नों की संख्या सम हो। इसके अलावा, बॉब को अपना कॉलम इस तरह भरना होगा कि उस कॉलम में विषम संख्या में ऋण चिह्न हों।
महत्वपूर्ण रूप से, ऐलिस को नहीं पता कि बॉब को कौन सा कॉलम भरने के लिए कहा गया है। इसी प्रकार, बॉब को नहीं पता है कि ऐलिस को कौन सी पंक्ति भरने के लिए कहा गया है। इस प्रकार, यह गेम असममित अपूर्ण जानकारी वाला एक बायेसियन गेम है, क्योंकि किसी भी खिलाड़ी के पास पूरी जानकारी नहीं है खेल के बारे में जानकारी (अपूर्ण जानकारी) और दोनों खिलाड़ियों के पास सम्मिलित जानकारी (असममित जानकारी) के संदर्भ में भिन्नता है।
प्रतिभागियों द्वारा किए गए कार्यों के आधार पर, इस खेल में दो में से एक परिणाम हो सकता है। या तो दोनों खिलाड़ी जीतते हैं, या दोनों खिलाड़ी हारते हैं।
यदि ऐलिस और बॉब अपनी पंक्ति और स्तंभ द्वारा साझा किए गए सेल में समान चिह्न लगाते हैं, तो वे गेम जीत जाते हैं। यदि वे विपरीत चिह्न लगाते हैं, तो वे गेम हार जाते हैं।
ध्यान दें कि दोनों खिलाड़ी अपने सभी प्लस और माइनस चिन्ह एक साथ लगाते हैं, और खेल समाप्त होने तक कोई भी खिलाड़ी यह नहीं देख सकता कि दूसरे खिलाड़ी ने अपने चिन्ह कहाँ लगाए हैं।
यह सिद्ध किया जा सकता है कि इस गेम के क्लासिक फॉर्मूलेशन में, ऐसी कोई योजना (नैश संतुलन या अन्यथा) नहीं है जो खिलाड़ियों को 8/9 से अधिक संभावना के साथ गेम जीतने की स्वीकृति देती है। 8/9 इसलिए होता है क्योंकि वे इस बात पर सहमत हो सकते हैं कि 9 में से 8 वर्गों में क्या मान रखा जाए, लेकिन 9वां वर्ग नहीं, जो संभावना 1/9 के साथ साझा वर्ग होगा। यदि ऐलिस और बॉब खेल प्रारम्भ होने से पहले मिलते हैं और सूचनाओं का आदान-प्रदान करते हैं, तो इससे खेल पर किसी भी तरह का प्रभाव नहीं पड़ेगा; खिलाड़ी अभी भी 8/9 संभावना के साथ जीत ही सर्वश्रेष्ठ कर सकते हैं।
खेल केवल 8/9 संभावना के साथ ही जीता जा सकता है इसका कारण यह है कि एक पूरी तरह से सुसंगत तालिका सम्मिलित नहीं है: यह स्व-विरोधाभासी होगी, तालिका में ऋण चिह्नों का योग पंक्ति योग के आधार पर भी होगा, और होगा कॉलम योगों का उपयोग करते समय अजीब, या इसके विपरीत। एक और उदाहरण के रूप में, यदि वे आरेख में दिखाए गए आंशिक तालिका का उपयोग करते हैं (ऐलिस के लिए -1 और लापता वर्ग में बॉब के लिए +1 द्वारा पूरक) और चुनौती पंक्तियों और स्तंभों को यादृच्छिक रूप से चुना जाता है तो वे 8/9 जीतेंगे समय का। ऐसी कोई शास्त्रीय योजना सम्मिलित नहीं है जो इस जीत दर को हरा सके (यादृच्छिक पंक्ति और स्तंभ चयन के साथ)।
यदि गेम को ऐलिस और बॉब को यह पता लगाने के बाद संवाद करने की स्वीकृति देने के लिए संशोधित किया गया था कि उन्हें कौन सी पंक्ति/स्तंभ सौंपा गया है, तो योजनायों का एक सेट सम्मिलित होगा जो दोनों खिलाड़ियों को संभावना 1 के साथ गेम जीतने की स्वीकृति देगा। हालांकि, यदि क्वांटम छद्म-टेलीपैथी का उपयोग किया गया, तो ऐलिस और बॉब दोनों बिना संवाद किए गेम जीत सकते थे।
छद्म-टेलीपैथिक योजनायाँ
क्वांटम छद्म-टेलीपैथी के उपयोग से ऐलिस और बॉब खेल प्रारम्भ होने के बाद बिना किसी संचार के 100% गेम जीतने में सक्षम होंगे।
इसके लिए ऐलिस और बॉब के पास उलझे हुए अवस्था वाले कणों के दो जोड़े होने की आवश्यकता है। ये कण खेल प्रारम्भ होने से पहले ही तैयार किये गये होंगे. प्रत्येक जोड़ी का एक कण ऐलिस द्वारा और दूसरा बॉब द्वारा धारण किया जाता है, इसलिए उनमें से प्रत्येक में दो कण होते हैं। जब ऐलिस और बॉब सीखते हैं कि उन्हें कौन सा कॉलम और पंक्ति भरनी है, तो प्रत्येक उस जानकारी का उपयोग यह चुनने के लिए करता है कि उन्हें अपने कणों के लिए कौन सा माप करना चाहिए। माप का परिणाम उनमें से प्रत्येक को यादृच्छिक प्रतीत होगा (और किसी भी कण का मनाया गया आंशिक संभाव्यता वितरण दूसरे पक्ष द्वारा किए गए माप से स्वतंत्र होगा), इसलिए कोई वास्तविक "संचार" नहीं होता है।
हालाँकि, कणों को मापने की प्रक्रिया माप के परिणामों के संयुक्त संभाव्यता वितरण पर पर्याप्त संरचना लगाती है जैसे कि यदि ऐलिस और बॉब अपने माप के परिणामों के आधार पर अपने कार्यों को चुनते हैं, तो योजनायों और मापों का एक सेट सम्मिलित होगा जो खेल को संभाव्यता 1 के साथ जीतने की स्वीकृति देगा।
ध्यान दें कि ऐलिस और बॉब एक-दूसरे से प्रकाश वर्ष दूर हो सकते हैं, और उलझे हुए कण अभी भी उन्हें निश्चितता के साथ गेम जीतने के लिए अपने कार्यों को पर्याप्त रूप से समन्वयित करने में सक्षम बनाएंगे।
इस खेल के प्रत्येक दौर में एक उलझी हुई स्थिति का उपयोग होता है। एन राउंड खेलने के लिए आवश्यक है कि एन उलझी हुई अवस्थाएं (2एन स्वतंत्र बेल जोड़े, नीचे देखें) पहले से साझा की जाएं। ऐसा इसलिए है क्योंकि प्रत्येक दौर को मापने के लिए 2-बिट जानकारी की आवश्यकता होती है (तीसरी प्रविष्टि पहले दो द्वारा निर्धारित की जाती है, इसलिए इसे मापना आवश्यक नहीं है), जो उलझाव को नष्ट कर देता है। पहले के खेलों के पुराने मापों का पुन: उपयोग करने का कोई तरीका नहीं है।
यह चाल ऐलिस और बॉब के लिए एक उलझी हुई क्वांटम स्थिति को साझा करने और तालिका प्रविष्टियों को प्राप्त करने के लिए उलझी हुई अवस्था के उनके घटकों पर विशिष्ट माप का उपयोग करने के लिए है। एक उपयुक्त सहसंबद्ध अवस्था में उलझी हुई बेल अवस्थाओं की एक जोड़ी होती है:
यहाँ और पाउली ऑपरेटर एस के स्वदेशी राज्य हैंx क्रमशः eigenvalues +1 और -1 के साथ, जबकि सबस्क्रिप्ट a, b, c, और d प्रत्येक बेल स्थिति के घटकों की पहचान करते हैं, a और c ऐलिस पर जा रहे हैं, और b और d बॉब पर जा रहे हैं। प्रतीक एक टेंसर उत्पाद का प्रतिनिधित्व करता है।
इन घटकों के अवलोकनों को पॉल के मैट्रिक्स के उत्पादों के रूप में लिखा जा सकता है:
इन पाउली स्पिन ऑपरेटरों के उत्पादों का उपयोग 3×3 तालिका को भरने के लिए किया जा सकता है, जैसे कि प्रत्येक पंक्ति और प्रत्येक कॉलम में आइगेनवैल्यू +1 और -1 के साथ वेधशालाओं का पारस्परिक रूप से क्रमपरिवर्तनशीलता सेट होता है, और प्रत्येक पंक्ति में वेधशालाओं का उत्पाद पहचान ऑपरेटर होता है, और प्रत्येक कॉलम में वेधशालाओं का उत्पाद पहचान ऑपरेटर को घटाकर बराबर होता है। यह एक तथाकथित मर्मिन-पेरेज़ जादुई वर्ग है। इसे नीचे तालिका में दिखाया गया है।
प्रभावी रूप से, जबकि प्रविष्टियों +1 और −1 के साथ 3×3 तालिका बनाना संभव नहीं है, जैसे कि प्रत्येक पंक्ति में तत्वों का उत्पाद +1 के बराबर हो और प्रत्येक कॉलम में तत्वों का उत्पाद −1 के बराबर हो, यह संभव है स्पिन मैट्रिक्स पर आधारित क्षेत्र में समृद्ध बीजगणित के साथ ऐसा करें।
प्रत्येक खिलाड़ी द्वारा खेल के प्रत्येक दौर में उलझी हुई स्थिति के अपने हिस्से का एक माप करके खेल आगे बढ़ता है। ऐलिस का प्रत्येक माप उसे एक पंक्ति के लिए मान देगा, और बॉब का प्रत्येक माप उसे एक कॉलम के लिए मान देगा। ऐसा करना संभव है क्योंकि किसी दी गई पंक्ति या स्तंभ में सभी अवलोकन योग्य वस्तुएँ घूमती हैं, इसलिए एक आधार सम्मिलित है जिसमें उन्हें एक साथ मापा जा सकता है। ऐलिस की पहली पंक्ति के लिए उसे अपने दोनों कणों को आधार पर मापने की आवश्यकता है, दूसरी पंक्ति के लिए उसे उन्हें आधार पर मापने की आवश्यकता है, और तीसरी पंक्ति के लिए उसे उन्हें उलझे हुए आधार पर मापने की आवश्यकता है . बॉब के पहले कॉलम के लिए उसे अपने पहले कण को आधार पर और दूसरे को आधार पर मापने की जरूरत है, दूसरे कॉलम के लिए उसे अपने पहले कण को आधार पर और दूसरे को आधार पर मापने की जरूरत है आधार, और अपने तीसरे स्तंभ के लिए उसे अपने दोनों कणों को एक अलग उलझे हुए आधार, बेल आधार में मापने की आवश्यकता है। जब तक ऊपर दी गई तालिका का उपयोग किया जाता है, तब तक माप परिणाम हमेशा ऐलिस के लिए उसकी पंक्ति के साथ +1 और बॉब के लिए उसके कॉलम के नीचे -1 से गुणा होने की गारंटी है। बेशक, प्रत्येक पूरी तरह से नए दौर के लिए एक नई उलझी हुई स्थिति की आवश्यकता होती है, क्योंकि विभिन्न पंक्तियाँ और स्तंभ एक-दूसरे के साथ संगत नहीं होते हैं।
समन्वय खेल
शास्त्रीय गैर-सहकारी खेल सिद्धांत में एक समन्वय खेल एकाधिक नैश संतुलन वाला कोई भी खेल है। छद्म-टेलीपैथी से संबंधित साहित्य कभी-कभी मर्मिन-पेरेज़ गेम जैसे गेम को समन्वय गेम के रूप में संदर्भित करता है। एक ओर, यह तकनीकी रूप से सही है, क्योंकि मर्मिन-पेरेज़ गेम के क्लासिक संस्करण में एकाधिक नैश संतुलन की सुविधा है।
हालाँकि, क्वांटम छद्म-टेलीपैथी समन्वय समस्याओं का कोई समाधान प्रदान नहीं करती है जो समन्वय खेलों की विशेषता है। क्वांटम स्यूडो-टेलीपैथी की उपयोगिता बायेसियन खेलों में असममित जानकारी के साथ समस्याओं को हल करने में निहित है जहां संचार निषिद्ध है।
उदाहरण के लिए, मर्मिन-पेरेज़ गेम में छद्म-टेलीपैथिक योजनायों को लागू करने से सूचनाओं के आदान-प्रदान के लिए बॉब और ऐलिस की आवश्यकता को दूर किया जा सकता है। हालाँकि, छद्म-टेलीपैथिक योजनायाँ समन्वय समस्याओं का समाधान नहीं करती हैं। विशेष रूप से, छद्म-टेलीपैथिक योजनायों को लागू करने के बाद भी, बॉब और ऐलिस केवल संभाव्यता के साथ गेम जीतेंगे यदि वे दोनों अपनी छद्म-टेलीपैथिक योजनायों को ऊपर वर्णित तरीके से समरूप तरीके से समन्वयित करते हैं।
वर्तमान शोध
यह प्रदर्शित किया गया है कि ऊपर वर्णित गेम अपने प्रकार का सबसे सरल दो-खिलाड़ियों का गेम है जिसमें क्वांटम छद्म टेलीपैथी संभाव्यता के साथ जीत की स्वीकृति देता है।[6] अन्य गेम जिनमें क्वांटम स्यूडो-टेलीपैथी होती है, का अध्ययन किया गया है, जिसमें बड़े मैजिक स्क्वायर गेम भी शामिल हैं,[7] ग्राफ़ रंग खेल[8] क्वांटम रंगीन संख्या की धारणा को जन्म देते हुए,[9] और मल्टीप्लेयर गेम जिसमें दो से अधिक प्रतिभागी शामिल हों।[10]सामान्य तौर पर, दो-खिलाड़ियों वाले गैर-स्थानीय गेम की जीत की संभावना को खिलाड़ियों द्वारा साझा करने की स्वीकृति वाली उलझी हुई क्वैबिट की संख्या में वृद्धि करके सुधार किया जा सकता है। क्वांटम छद्म-टेलीपैथी का उपयोग करके दो-खिलाड़ियों के खेल को जीतने की अधिकतम संभावना की गणना करना असंभव है, लेकिन एक बड़ी, लेकिन सीमित, साझा उलझी हुई क्वैबिट की संख्या मानकर एक निचली सीमा निर्धारित की जा सकती है; एक ऊपरी सीमा को गैर-स्थानीय गेम के समतुल्य ढांचे के संदर्भ में भी सेट किया जा सकता है, जो कि कम्यूटिंग मैट्रिसेस पर आधारित है। अधिकतम जीत की संभावना के लिए ऊपरी और निचली सीमा की गणना एनपी-हार्ड है।[11] जबकि कुछ खेल अधिकतम जीत की संभावना को मनमाने ढंग से बारीकी से गणना करने की स्वीकृति दे सकते हैं, कोन्स एम्बेडिंग समस्या का दावा किया गया खंडन[12] का तात्पर्य है कि ऐसे खेल हैं जहां ये सीमाएं एक अद्वितीय अधिकतम जीत की संभावना में परिवर्तित नहीं होती हैं।[13]
हाल के अध्ययन सुसंगत क्वांटम स्थिति पर अपूर्ण माप के कारण शोर के खिलाफ प्रभाव की मजबूती के सवाल से निपटते हैं।[14] हाल के काम में उलझाव के कारण गैर-रेखीय वितरित गणना की संचार लागत में तेजी से वृद्धि देखी गई है, जब संचार चैनल स्वयं रैखिक होने तक सीमित है।[15]
जुलाई 2022 में एक अध्ययन में मर्मिन-पेरेज़ मैजिक स्क्वायर गेम के गैर-स्थानीय संस्करण को खेलकर क्वांटम स्यूडोटेलीपैथी के प्रयोगात्मक प्रदर्शन की सूचना दी गई।[16][17]
ग्रीनबर्गर-हॉर्न-ज़ीलिंगर गेम
ग्रीनबर्गर-हॉर्न-ज़ीलिंगर (जीएचजेड) गेम क्वांटम छद्म टेलीपैथी का एक और दिलचस्प उदाहरण है। शास्त्रीय रूप से, खेल में जीतने की संभावना 75% है। हालाँकि, क्वांटम योजना के साथ, खिलाड़ी हमेशा 1 के बराबर जीत की संभावना के साथ जीतेंगे।
तीन खिलाड़ी हैं, ऐलिस, बॉब और कैरोल एक रेफरी के खिलाफ खेल रहे हैं। रेफरी प्रत्येक खिलाड़ी से प्रश्न पूछता है। तीनों खिलाड़ियों में से प्रत्येक का उत्तर है। रेफरी 4 विकल्पों में से समान रूप से तीन प्रश्न x, y, z निकालता है चुना जाता है, फिर ऐलिस को बिट 0, बॉब को बिट 1 और कैरोल को रेफरी से बिट 1 प्राप्त होता है। प्राप्त प्रश्न के आधार पर, ऐलिस, बॉब और कैरोल प्रत्येक उत्तर ए, बी, सी के साथ 0 या 1 के रूप में देते हैं। खिलाड़ी खेल प्रारम्भ होने से पहले एक साथ योजना बना सकते हैं। हालाँकि, खेल के दौरान किसी भी संचार की स्वीकृति नहीं है।
खिलाड़ी जीतते हैं यदि , कहाँ OR स्थिति को इंगित करता है और मोडुलो 2 में उत्तरों का योग इंगित करता है। दूसरे शब्दों में, तीन उत्तरों का योग सम होना चाहिए . अन्यथा, उत्तरों का योग विषम होना चाहिए।
0 | 0 | 0 | 0 mod 2 |
1 | 1 | 0 | 1 mod 2 |
1 | 0 | 1 | 1 mod 2 |
0 | 1 | 1 | 1 mod 2 |
शास्त्रीय योजना
शास्त्रीय रूप से, ऐलिस, बॉब और कैरोल एक नियतात्मक योजना अपना सकते हैं जो हमेशा विषम योग के साथ समाप्त होती है (उदाहरण के लिए ऐलिस हमेशा आउटपुट 1. बॉब और कैरोल हमेशा आउटपुट 0)। खिलाड़ी 75% समय जीतते हैं और केवल तभी हारते हैं जब प्रश्न हों .
वास्तव में, शास्त्रीय दृष्टि से यह जीतने की सबसे अच्छी योजना है। हम जीत की 4 में से अधिकतम 3 शर्तों को ही पूरा कर सकते हैं। होने देना क्रमशः प्रश्न 0 और 1 पर ऐलिस की प्रतिक्रिया हो, प्रश्न 0, 1, और पर बॉब की प्रतिक्रिया हो प्रश्न 0, 1 पर कैरल की प्रतिक्रिया बनें। हम उन सभी बाधाओं को लिख सकते हैं जो जीतने की शर्तों को पूरा करती हैं
क्वांटम योजना
अब हम उस दिलचस्प हिस्से पर आ गए हैं जहां ऐलिस, बॉब और कैरोल ने क्वांटम योजना अपनाने का फैसला किया। वे तीनों अब त्रिपक्षीय उलझन वाली स्थिति साझा करते हैं , जिसे GHZ राज्य के रूप में जाना जाता है।
यदि प्रश्न 0 प्राप्त होता है, तो खिलाड़ी X आधार पर माप करता है . यदि प्रश्न 1 प्राप्त होता है, तो खिलाड़ी Y आधार पर माप करता है . दोनों मामलों में, यदि माप का परिणाम जोड़ी की पहली स्थिति है तो खिलाड़ी उत्तर 0 देते हैं, और यदि परिणाम जोड़ी की दूसरी स्थिति है तो उत्तर 1 देते हैं।
यह जांचना आसान है कि इस योजना से खिलाड़ी प्रायिकता 1 के साथ गेम जीतते हैं।
यह भी देखें
- क्वांटम गेम सिद्धांत
- क्वांटम रेफरीड गेम
- जीएचजेड अवस्था - एक उलझी हुई 3-कण अवस्था।
- ईपीआर विरोधाभास
- कोचेन-स्पेकर प्रमेय
- क्वांटम सूचना विज्ञान
- क्यूबिट
- Tsirelson की सीमा
- व्हीलर-फेनमैन अवशोषक सिद्धांत
टिप्पणियाँ
- ↑ Brassard, Gilles; Cleve, Richard; Tapp, Alain (1999). "शास्त्रीय संचार के साथ क्वांटम उलझाव का सटीक अनुकरण करने की लागत". Physical Review Letters. 83 (9): 1874–1877. arXiv:quant-ph/9901035. Bibcode:1999PhRvL..83.1874B. doi:10.1103/PhysRevLett.83.1874. S2CID 5837965.
- ↑ Brassard, Gilles; Broadbent, Anne; Tapp, Alain (2003). "Multi-party Pseudo-Telepathy". एल्गोरिदम और डेटा संरचनाएं. Lecture Notes in Computer Science. Vol. 2748. pp. 1–11. arXiv:quant-ph/0306042. doi:10.1007/978-3-540-45078-8_1. ISBN 978-3-540-40545-0. S2CID 14390319.
- ↑ Cabello, A. (2001). "बेल का प्रमेय दो पर्यवेक्षकों के लिए असमानताओं और संभावनाओं के बिना". Physical Review Letters. 86 (10): 1911–1914. arXiv:quant-ph/0008085. Bibcode:2001PhRvL..86.1911C. doi:10.1103/PhysRevLett.86.1911. PMID 11289818. S2CID 119472501.
- ↑ Cabello, A. (2001). "दो पर्यवेक्षकों के लिए सब बनाम कुछ भी नहीं की अविभाज्यता". Physical Review Letters. 87 (1): 010403. arXiv:quant-ph/0101108. Bibcode:2001PhRvL..87a0403C. doi:10.1103/PhysRevLett.87.010403. PMID 11461451. S2CID 18748483.
- ↑ Aravind, P.K. (2004). "क्वांटम रहस्यों पर फिर से गौर किया गया" (PDF). American Journal of Physics. 72 (10): 1303–1307. arXiv:quant-ph/0206070. Bibcode:2004AmJPh..72.1303A. CiteSeerX 10.1.1.121.9157. doi:10.1119/1.1773173.
- ↑ Gisin, N.; Methot, A. A.; Scarani, V. (2007). "Pseudo-telepathy: Input cardinality and Bell-type inequalities". International Journal of Quantum Information. 5 (4): 525–534. arXiv:quant-ph/0610175. doi:10.1142/S021974990700289X. S2CID 11386567.
- ↑ Kunkri, Samir; Kar, Guruprasad; Ghosh, Sibasish; Roy, Anirban (2006). "एकल गैर-स्थानीय बॉक्स का उपयोग करके छद्म टेलीपैथी गेम के लिए जीतने की रणनीतियाँ". arXiv:quant-ph/0602064.
- ↑ Avis, D.; Hasegawa, Jun; Kikuchi, Yosuke; Sasaki, Yuuya (2006). "सभी हैडामर्ड ग्राफ़ पर ग्राफ़ कलरिंग गेम जीतने के लिए एक क्वांटम प्रोटोकॉल". IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. 89 (5): 1378–1381. arXiv:quant-ph/0509047. Bibcode:2006IEITF..89.1378A. doi:10.1093/ietfec/e89-a.5.1378.
- ↑ Cameron, Peter J.; Montanaro, Ashley; Newman, Michael W.; Severini, Simone; Winter, Andreas (2007). "ग्राफ़ की क्वांटम रंगीन संख्या पर". Electronic Journal of Combinatorics. 14 (1). arXiv:quant-ph/0608016. doi:10.37236/999. S2CID 6320177.
- ↑ Brassard, Gilles; Broadbent, Anne; Tapp, Alain (2005). "मर्मिन के मल्टी-प्लेयर गेम को छद्म टेलीपैथी के ढांचे में दोबारा ढालना". Quantum Information and Computation. 5 (7): 538–550. arXiv:quant-ph/0408052. Bibcode:2004quant.ph..8052B. doi:10.26421/QIC5.7-2.
- ↑ "क्वांटम गेम्स में, बाधाओं से खेलने का कोई तरीका नहीं है". Quanta Magazine. 1 April 2019.
- ↑ Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (November 2021). "MIP* = RE". Communications of the ACM. 64 (11): 131–138. doi:10.1145/3485628. S2CID 210165045.
- ↑ Hartnett, Kevin (4 March 2020). "भौतिकी और गणित के माध्यम से ऐतिहासिक कंप्यूटर विज्ञान प्रमाण कैस्केड". Quanta Magazine (in English).
- ↑ Gawron, Piotr; Miszczak, Jarosław; Sładkowski, JAN (2008). "क्वांटम मैजिक स्क्वेयर गेम में शोर प्रभाव". International Journal of Quantum Information. 06: 667–673. arXiv:0801.4848. Bibcode:2008arXiv0801.4848G. doi:10.1142/S0219749908003931. S2CID 14337088.
- ↑ Marblestone, Adam Henry; Devoret, Michel (2010). "स्थानीय गैर-रैखिकता के साथ वितरित जोड़ के लिए घातीय क्वांटम वृद्धि". Quantum Information Processing. 9: 47–59. arXiv:0907.3465. doi:10.1007/s11128-009-0126-9. S2CID 14744349.
- ↑ Xu, Jia-Min; Zhen, Yi-Zheng; Yang, Yu-Xiang; Cheng, Zi-Mo; Ren, Zhi-Cheng; Chen, Kai; Wang, Xi-Lin; Wang, Hui-Tian (2022-07-26). "क्वांटम स्यूडोटेलीपैथी का प्रायोगिक प्रदर्शन". Physical Review Letters. 129 (5): 050402. arXiv:2206.12042. Bibcode:2022PhRvL.129e0402X. doi:10.1103/PhysRevLett.129.050402. PMID 35960591. S2CID 250048711.
- ↑ "जब तक आप इसे माप नहीं लेते तब तक वास्तविकता अस्तित्व में नहीं है, क्वांटम पार्लर ट्रिक इसकी पुष्टि करती है". www.science.org (in English). Retrieved 2022-08-27.