पूर्णांक अनुक्रमों का ऑनलाइन विश्वकोश
स्थापित | 1964 |
---|---|
पूर्ववर्ती | Handbook of Integer Sequences, Encyclopedia of Integer Sequences |
के द्वारा बनाई गई | Neil Sloane |
अध्यक्ष | Neil Sloane |
अध्यक्ष | Russ Cox |
यूआरएल | oeis |
व्यावसायिक | No[1] |
पंजीकरण | Optional[2] |
शुरू | 1996 |
Content license | Creative Commons CC BY-SA 4.0[3] |
पूर्णांक अनुक्रमों का ऑन-लाइन विश्वकोश (OEIS) पूर्णांक अनुक्रमों का ऑनलाइन डेटाबेस है। इसे एटी एंड टी लैब्स में शोध के दौरान नील स्लोएन द्वारा बनाया और बनाए रखा गया था। उन्होंने 2009 में OEIS की बौद्धिक संपदा और होस्टिंग को OEIS फाउंडेशन को हस्तांतरित कर दिया।[4] स्लोअन OEIS फाउंडेशन के अध्यक्ष हैं।
ओईआईएस पेशेवर और [[शौकिया गणितज्ञों की सूची]] गणितज्ञों दोनों के लिए रुचि के पूर्णांक अनुक्रमों पर जानकारी रिकॉर्ड करता है, और व्यापक रूप से उद्धृत किया जाता है। As of April 2023[ref], इसमें 360,000 से अधिक अनुक्रम शामिल हैं,[5] यह इसे अपनी तरह का सबसे बड़ा डेटाबेस बनाता है।
प्रत्येक प्रविष्टि में अनुक्रम के प्रमुख शब्द, कीवर्ड (कंप्यूटर प्रोग्रामिंग), गणितीय प्रेरणा, साहित्य लिंक और बहुत कुछ शामिल है, जिसमें किसी फ़ंक्शन का ग्राफ़ उत्पन्न करने या अनुक्रम का कंप्यूटर संगीत प्रतिनिधित्व चलाने का विकल्प शामिल है। डेटाबेस कीवर्ड द्वारा, अनुवर्ती द्वारा, या 16 फ़ील्ड में से किसी द्वारा खोज इंजन (कंप्यूटिंग) है।
इतिहास
नील स्लोएन ने साहचर्य में अपने काम का समर्थन करने के लिए 1964 में स्नातक छात्र के रूप में पूर्णांक अनुक्रम एकत्र करना शुरू किया।[6][7] डेटाबेस को पहले छिद्रित कार्डों पर संग्रहीत किया गया था। उन्होंने डेटाबेस से चयनों को पुस्तक के रूप में दो बार प्रकाशित किया:
ए हैंडबुक ऑफ़ इंटीजर सीक्वेंसेस (1973, ISBN 0-12-648550-X), जिसमें शब्दावली क्रम में 2,372 अनुक्रम और 1 से 2372 तक निर्दिष्ट संख्याएँ शामिल हैं।
साइमन प्लॉफ़े के साथ द इनसाइक्लोपीडिया ऑफ़ इंटीजर सीक्वेंसेस (1995, ISBN 0-12-558630-2), जिसमें 5,488 अनुक्रम हैं और एम0000 से एम5487 तक एम-नंबर निर्दिष्ट हैं। एनसाइक्लोपीडिया में पूर्णांक अनुक्रमों की हैंडबुक में संबंधित अनुक्रमों (जो उनके कुछ प्रारंभिक शब्दों में भिन्न हो सकते हैं) के संदर्भ को N0001 से N2372 तक (1 से 2372 के बजाय) एन-संख्याओं के रूप में शामिल किया गया है। एनसाइक्लोपीडिया में ए-संख्याएं शामिल हैं जो ओईआईएस में उपयोग की जाती हैं, जबकि हैंडबुक में ऐसा नहीं था।
इन पुस्तकों को खूब सराहा गया और, विशेष रूप से दूसरे प्रकाशन के बाद, गणितज्ञों ने स्लोएन को नए अनुक्रमों का निरंतर प्रवाह प्रदान किया। पुस्तक के रूप में संग्रह असहनीय हो गया, और जब डेटाबेस 16,000 प्रविष्टियों तक पहुँच गया तो स्लोएन ने ऑनलाइन जाने का निर्णय लिया - पहले ईमेल सेवा के रूप में (अगस्त 1994), और उसके तुरंत बाद वेबसाइट के रूप में (1996)। डेटाबेस कार्य के स्पिन-ऑफ के रूप में, स्लोएन ने 1998 में पूर्णांक अनुक्रमों का जर्नल की स्थापना की।[8]
डेटाबेस प्रति वर्ष लगभग 10,000 प्रविष्टियों की दर से बढ़ रहा है।
स्लोएन ने लगभग 40 वर्षों तक 'अपने' अनुक्रमों को व्यक्तिगत रूप से प्रबंधित किया है, लेकिन 2002 से शुरू होकर, सहयोगी संपादकों और स्वयंसेवकों के बोर्ड ने डेटाबेस को बनाए रखने में मदद की है।[9]
2004 में, स्लोएन ने डेटाबेस में 100,000वें अनुक्रम को जोड़ने का जश्न मनाया, A100000, जो इशांगो हड्डी पर निशानों को गिनता है। 2006 में, उपयोगकर्ता इंटरफ़ेस में सुधार किया गया और अधिक उन्नत खोज क्षमताएँ जोड़ी गईं। 2010 में OEIS संपादकों और योगदानकर्ताओं के सहयोग को सरल बनाने के लिए OEIS.org पर OEIS wiki बनाया गया था।[10] 200,000वाँ क्रम, A200000, नवंबर 2011 में डेटाबेस में जोड़ा गया था; प्रारंभ में इसे A200715 के रूप में दर्ज किया गया था, और SeqFan मेलिंग सूची पर सप्ताह की चर्चा के बाद इसे A200000 में स्थानांतरित कर दिया गया,[11][12] A200000 के लिए विशेष अनुक्रम चुनने के लिए OEIS के प्रधान संपादक चार्ल्स ग्रेटहाउस के प्रस्ताव के बाद।[13] A300000 को फरवरी 2018 में परिभाषित किया गया था, और जुलाई 2020 के अंत तक डेटाबेस में 336,000 से अधिक अनुक्रम शामिल थे।
गैर पूर्णांक
पूर्णांक अनुक्रमों के अलावा, OEIS भिन्नों के अनुक्रमों, पारलौकिक संख्याओं के अंकों, जटिल संख्याओं आदि को भी पूर्णांक अनुक्रमों में परिवर्तित करके सूचीबद्ध करता है। भिन्नों के अनुक्रमों को दो अनुक्रमों द्वारा दर्शाया जाता है (कीवर्ड 'फ्रैक' के साथ नामित): अंशों का अनुक्रम और हर का अनुक्रम। उदाहरण के लिए, पांचवें क्रम का फ़ेरी अनुक्रम, , को अंश अनुक्रम 1, 1, 1, 2, 1, 3, 2, 3, 4 के रूप में सूचीबद्ध किया गया है (A006842) और हर क्रम 5, 4, 3, 5, 2, 5, 3, 4, 5 (A006843). महत्वपूर्ण अपरिमेय संख्याएँ जैसे π = 3.1415926535897... को दशमलव विस्तार जैसे प्रतिनिधि पूर्णांक अनुक्रमों के अंतर्गत सूचीबद्ध किया गया है (यहाँ 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3 , 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, ... (A000796)), द्विआधारी संख्या विस्तार (यहां 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, ... (A004601)), या निरंतर भिन्न विस्तार (यहाँ 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, ... (A001203)).
सम्मेलन
OEIS 2011 तक सादे ASCII पाठ तक ही सीमित था, और यह अभी भी पारंपरिक गणितीय नोटेशन (जैसे फ़ंक्शन (गणित) के लिए f(n), रनिंग वेरिएबल (गणित, आदि) के लिए n) के रैखिक रूप का उपयोग करता है। ग्रीक वर्णमाला को आमतौर पर उनके पूरे नामों से दर्शाया जाता है, जैसे, μ के लिए म्यू, φ के लिए फी।
प्रत्येक अनुक्रम की पहचान अक्षर A और उसके बाद छह अंकों से होती है, जिसे लगभग हमेशा अग्रणी शून्य के साथ संदर्भित किया जाता है, उदाहरण के लिए, A315 के बजाय A000315।
अनुक्रमों के अलग-अलग शब्दों को अल्पविराम द्वारा अलग किया जाता है। अंक समूहों को अल्पविराम, अवधि या रिक्त स्थान से अलग नहीं किया जाता है।
टिप्पणियों, सूत्रों आदि में, a(n)
अनुक्रम के nवें पद का प्रतिनिधित्व करता है।
शून्य का विशेष अर्थ
शून्य का उपयोग अक्सर गैर-मौजूद अनुक्रम तत्वों को दर्शाने के लिए किया जाता है। उदाहरण के लिए, A104157 n की सबसे छोटी अभाज्य संख्या की गणना करता है2 कम से कम जादुई स्थिरांक का n × n जादुई वर्ग बनाने के लिए लगातार अभाज्य संख्याएँ, या यदि ऐसा कोई जादुई वर्ग मौजूद नहीं है तो 0। a(1) (1 × 1 जादुई वर्ग) का मान 2 है; a(3) 1480028129 है। लेकिन ऐसा कोई 2 × 2 जादुई वर्ग नहीं है, इसलिए a(2) 0 है। इस विशेष उपयोग का कुछ गिनती कार्यों में ठोस गणितीय आधार है; उदाहरण के लिए, इतने सारे वैलेंस फ़ंक्शन एनφ(एम) (A014197) φ(x) = m के समाधानों की गणना करता है। 4 के लिए 4 समाधान हैं, लेकिन 14 के लिए कोई समाधान नहीं है, इसलिए A014197 का a(14) 0 है—कोई समाधान नहीं है।
अन्य मानों का भी उपयोग किया जाता है, आमतौर पर -1 (देखें)। A000230 या A094076).
शब्दावली क्रम
OEIS अनुक्रमों के शब्दकोषीय क्रम को बनाए रखता है, इसलिए प्रत्येक अनुक्रम में पूर्ववर्ती और उत्तराधिकारी (इसका संदर्भ) होता है।[14] ओईआईएस लेक्सिकोग्राफ़िक ऑर्डरिंग के लिए अनुक्रमों को सामान्य बनाता है, (आमतौर पर) सभी प्रारंभिक शून्य और को अनदेखा करता है, और प्रत्येक तत्व के संकेत (गणित) को भी अनदेखा करता है। वजन वितरण कोड के अनुक्रम अक्सर समय-समय पर आवर्ती शून्य को छोड़ देते हैं।
उदाहरण के लिए, विचार करें: अभाज्य संख्याएँ, पैलिंड्रोमिक अभाज्य संख्याएँ, फाइबोनैचि संख्या, आलसी कैटरर अनुक्रम, और श्रृंखला विस्तार में गुणांक . . . . OEIS शब्दकोषीय क्रम में, वे हैं:
- अनुक्रम #1: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,... A000040
- अनुक्रम #2: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, ... A002385
- अनुक्रम #3: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ... A000045
- अनुक्रम #4: 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, ... A000124
- अनुक्रम #5: 1, −3, −8, −3, −24, 24, −48, −3, −8, 72, −120, 24, −168, 144, ... A046970
जबकि असामान्य शब्दावली क्रम इन अनुक्रमों को इस प्रकार क्रमित करेगा: #3, #5, #4, #1, #2।
स्व-संदर्भित अनुक्रम
OEIS के इतिहास में बहुत पहले, OEIS में अनुक्रमों की संख्या के संदर्भ में परिभाषित अनुक्रम प्रस्तावित किए गए थे। मैंने लंबे समय तक इन अनुक्रमों को जोड़ने का विरोध किया, आंशिक रूप से डेटाबेस की गरिमा बनाए रखने की इच्छा से, और आंशिक रूप से क्योंकि A22 केवल 11 शब्दों के लिए जाना जाता था! , स्लोएन ने याद दिलाया।[15]
ओईआईएस में स्वीकार किए गए सबसे शुरुआती स्व-संदर्भित अनुक्रमों में से स्लोएन था A031135 (बाद में A091967) a(n) = अनुक्रम A का nवाँ पदn या -1 यदि एn n से कम पद हैं। इस क्रम ने और अधिक शर्तें खोजने में प्रगति को प्रेरित किया A000022. A100544 अनुक्रम ए में दिए गए पहले पद को सूचीबद्ध करता हैn, लेकिन ऑफसेट पर बदलती राय के कारण इसे समय-समय पर अद्यतन करने की आवश्यकता है। इसके स्थान पर अनुक्रम A के पद a(1) को सूचीबद्ध करनाn यह अच्छा विकल्प प्रतीत हो सकता है यदि यह तथ्य न होता कि कुछ अनुक्रमों में 2 और उससे अधिक के ऑफसेट होते हैं।
विचार की यह पंक्ति इस प्रश्न की ओर ले जाती है कि क्या अनुक्रम ए हैn संख्या n समाहित है? और अनुक्रम A053873, संख्याएँ n ऐसी कि OEIS अनुक्रम An इसमें n , और शामिल है A053169, n इस अनुक्रम में है यदि और केवल यदि n अनुक्रम A में नहीं हैn. इस प्रकार, भाज्य संख्या 2808 A053873 में है क्योंकि A002808 भाज्य संख्याओं का क्रम है, जबकि गैर-अभाज्य 40 A053169 में है क्योंकि यह इसमें नहीं है A000040, अभाज्य संख्याएँ। प्रत्येक n वास्तव में इन दो अनुक्रमों में से का सदस्य है, और सिद्धांत रूप में यह निर्धारित किया जा सकता है कि प्रत्येक n किस अनुक्रम से संबंधित है, दो अपवादों के साथ (स्वयं दो अनुक्रमों से संबंधित):
- यह निर्धारित नहीं किया जा सकता कि 53873 A053873 का सदस्य है या नहीं। यदि यह क्रम में है तो परिभाषा के अनुसार यह होना चाहिए; यदि यह क्रम में नहीं है तो (फिर से, परिभाषा के अनुसार) यह नहीं होना चाहिए। फिर भी, कोई भी निर्णय सुसंगत होगा, और यह प्रश्न भी हल हो जाएगा कि क्या 53873 ए053169 में है।
- यह सिद्ध किया जा सकता है कि 53169 विरोधाभास का सिद्धांत ए053169 का सदस्य है। यदि यह क्रम में है तो परिभाषा के अनुसार यह नहीं होना चाहिए; यदि यह क्रम में नहीं है तो (फिर से, परिभाषा के अनुसार) यह होना चाहिए। यह रसेल के विरोधाभास का रूप है। इसलिए यह उत्तर देना भी संभव नहीं है कि 53169 A053873 में है या नहीं।
विशिष्ट प्रविष्टि का संक्षिप्त उदाहरण
यह प्रविष्टि, A046970, इसलिए चुना गया क्योंकि इसमें हर वह फ़ील्ड शामिल है जो OEIS प्रविष्टि में हो सकती है।[16]
A046970 जॉर्डन फ़ंक्शन J_2 (A007434) का डिरिचलेट व्युत्क्रम।
1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -5 76, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576
ऑफसेट 1,2
टिप्पणियां
चिह्नों के अलावा Sum_{d|n} core(d)^2*mu(n/d) जहां core(x) x का वर्गमुक्त भाग है। - बेनोइट क्लोइटर, 31 मई 2002
संदर्भ एम. अब्रामोविट्ज़ और आई. ए. स्टेगन, गणितीय कार्यों की पुस्तिका, डोवर प्रकाशन, 1965, पीपी. 805-811।
टी. एम. अपोस्टोल, विश्लेषणात्मक संख्या सिद्धांत का परिचय, स्प्रिंगर-वेरलाग, 1986, पी। 48.
लिंक रेइनहार्ड ज़ुमकेलर, n = 1..10000 के लिए n, a(n) की तालिका
एम. अब्रामोवित्ज़ और आई. ए. स्टेगन, संपा., हैंडबुक ऑफ़ मैथमेटिकल फ़ंक्शंस, नेशनल ब्यूरो ऑफ़ स्टैंडर्ड्स, एप्लाइड मैथ। शृंखला 55, दसवीं छपाई, 1972 [वैकल्पिक स्कैन की गई प्रति]। पी. जी. ब्राउन, व्युत्क्रम अंकगणितीय कार्यों पर कुछ टिप्पणियाँ, गणित। गज. 89 (516) (2005) 403-408। पॉल डब्ल्यू ऑक्सबी, एफआईआर फ़िल्टर डिज़ाइन में सिंक फ़ंक्शन के विकल्प के रूप में चेबीशेव पॉलीनोमिअल्स पर आधारित फ़ंक्शन, arXiv:2011.10546 [eess.SP], 2020। विकिपीडिया, रीमैन ज़ेटा फ़ंक्शन।
a(p^e) = 1 - p^2 के साथ गुणक सूत्र।
a(n) = Sum_{d|n} mu(d)*d^2. abs(a(n)) = उत्पाद_{p अभाज्य भाग n} (p^2 - 1)। - जॉन पेरी, 24 अगस्त 2010 वोल्फडीटर लैंग से, 16 जून 2011: (प्रारंभ) डिरिचलेट जी.एफ.: ज़ेटा(एस)/जेटा(एस-2)। a(n) = J_{-2}(n)*n^2, जॉर्डन फ़ंक्शन J_k(n) के साथ, J_k(1):=1 के साथ। एपोस्टोल संदर्भ देखें, पृ. 48. व्यायाम 17. (समाप्त) ए(प्राइम(एन)) = -ए084920(एन)। - आर. जे. मथार, 28 अगस्त 2011 जी.एफ.: Sum_{k>=1} mu(k)*k^2*x^k/(1 - x^k). - इल्या गुटकोव्स्की, 15 जनवरी 2017
उदाहरण a(3) = -8 क्योंकि 3 के विभाजक {1, 3} हैं और mu(1)*1^2 + mu(3)*3^2 = -8।
a(4) = -3 क्योंकि 4 के विभाजक {1, 2, 4} हैं और mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3. उदाहरण के लिए, a(15) = (3^2 - 1) * (5^2 - 1) = 8*24 = 192. - जॉन पेरी, 24 अगस्त 2010 जी.एफ. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ...
मेपल जिनवक := proc(n, k) स्थानीय ए, एफ, पी ; ए := 1 ; ifactors(n)[2] में f के लिए do p := op(1, f) ; a := a*(1-p^k); अंत करें: ए ; अंतिम प्रक्रिया:
A046970 := proc(n) Jinvk(n, 2) ; अंतिम प्रक्रिया: # आर.जे. मथार, 04 जुलाई 2011
गणित muDD[d_] := MoebiusMu[d]*d^2; तालिका[प्लस @@ एमयूडीडी[विभाजक[एन, {एन, 60}] (लोपेज़)
समतल करें[तालिका[{x = FactorInteger[n]; पी = 1; [i = 1, i <= लंबाई[x], i++, p = p*(1 - xi1^2)] के लिए; पी}, {एन, 1, 50, 1} (* जॉन पेरी, 24 अगस्त 2010 *) a[ n_]]:= यदि[ n < 1, 0, योग[ d^2 MoebiusMu[ d], {d, विभाजक @ n} (* माइकल सोमोस, 11 जनवरी 2014 *) a[ n_]_:= यदि[ n < 2, बूले[ n == 1], टाइम्स @@ (1 - #1^2 और /@ FactorInteger @ n)] (* माइकल सोमोस, 11 जनवरी 2014 *)
PROG (PARI) A046970(n)=sumdiv(n, d, d^2*moebius(d)) \\ बेनोइट क्लॉइटर
(हास्केल) a046970 = उत्पाद। नक्शा ((1 -) . (^ 2)) . a027748_row -- रेइनहार्ड जुमकेलर, 19 जनवरी 2012 (PARI) {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X*p^2) / (1 - X))[n])} /* माइकल सोमोस, 11 जनवरी 2014 */
क्रॉसरेफ़्स Cf. A007434, A027641, A027642, A063453, A023900।
सी एफ ए027748. संदर्भ में अनुक्रम: A144457 A220138 A146975 * A322360 A058936 A280369 आसन्न अनुक्रम: A046967 A046968 A046969 * A046971 A046972 A046973
कीवर्ड साइन, आसान, मल्टी लेखक डगलस स्टोल, dougstoll(AT)email.msn.com एक्सटेंशन व्लाडेटा जोवोविक द्वारा संशोधित और विस्तारित, 25 जुलाई 2001
अतिरिक्तविल्फ्रेडो लोपेज़ की टिप्पणियाँ (chakotay147138274(AT)yahoo.com), 01 जुलाई 2005
प्रवेश फ़ील्ड
- आईडी नंबर
- OEIS में प्रत्येक अनुक्रम में क्रम संख्या, छह अंकों का सकारात्मक पूर्णांक होता है, जिसके पहले A लगा होता है (और नवंबर 2004 से पहले बाईं ओर शून्य-पैडेड होता है)। अक्षर A का मतलब निरपेक्ष है। नंबर या तो संपादकों द्वारा या ए नंबर डिस्पेंसर द्वारा निर्दिष्ट किए जाते हैं, जो तब उपयोगी होता है जब योगदानकर्ता साथ कई संबंधित अनुक्रम भेजना चाहते हैं और क्रॉस-रेफरेंस बनाने में सक्षम होते हैं। यदि उपयोग न किया जाए तो डिस्पेंसर का ए नंबर जारी होने के महीने बाद समाप्त हो जाता है। लेकिन जैसा कि मनमाने ढंग से चयनित अनुक्रमों की निम्नलिखित तालिका से पता चलता है, मोटा पत्राचार कायम है।
A059097 | Numbers n such that the binomial coefficient C(2n, n) is not divisible by the square of an odd prime. | Jan 1, 2001 |
---|---|---|
A060001 | Fibonacci(n)!. | Mar 14, 2001 |
A066288 | Number of 3-dimensional polyominoes (or polycubes) with n cells and symmetry group of order exactly 24. | Jan 1, 2002 |
A075000 | Smallest number such that n · a(n) is a concatenation of n consecutive integers ... | Aug 31, 2002 |
A078470 | Continued fraction for ζ(3/2) | Jan 1, 2003 |
A080000 | Number of permutations satisfying −k ≤ p(i) − i ≤ r and p(i) − i | Feb 10, 2003 |
A090000 | Length of longest contiguous block of 1s in binary expansion of nth prime. | Nov 20, 2003 |
A091345 | Exponential convolution of A069321(n) with itself, where we set A069321(0) = 0. | Jan 1, 2004 |
A100000 | Marks from the 22000-year-old Ishango bone from the Congo. | Nov 7, 2004 |
A102231 | Column 1 of triangle A102230, and equals the convolution of A032349 with A032349 shift right. | Jan 1, 2005 |
A110030 | Number of consecutive integers starting with n needed to sum to a Niven number. | Jul 8, 2005 |
A112886 | Triangle-free positive integers. | Jan 12, 2006 |
A120007 | Möbius transform of sum of prime factors of n with multiplicity. | Jun 2, 2006 |
- यहां तक कि ओईआईएस की पूर्ववर्ती पुस्तक के अनुक्रमों के लिए भी, आईडी संख्याएं समान नहीं हैं। 1973 की पूर्णांक अनुक्रमों की हैंडबुक में लगभग 2400 अनुक्रम थे, जिन्हें लेक्सिकोग्राफ़िक क्रम (अक्षर एन प्लस चार अंक, जहां आवश्यक हो, शून्य-पैडेड) द्वारा क्रमांकित किया गया था, और 1995 के पूर्णांक अनुक्रमों के विश्वकोश में 5487 अनुक्रम थे, जिन्हें लेक्सिकोग्राफ़िक क्रम (अक्षर एन प्लस चार अंक) द्वारा क्रमांकित किया गया था। अक्षर एम प्लस 4 अंक, जहां आवश्यक हो वहां शून्य-पैडेड)। ये पुराने एम और एन नंबर, जैसा लागू हो, आधुनिक ए नंबर के बाद कोष्ठक में आईडी नंबर फ़ील्ड में समाहित हैं।
- अनुक्रम डेटा
- अनुक्रम फ़ील्ड संख्याओं को लगभग 260 वर्णों तक सूचीबद्ध करता है।[17] अनुक्रमों की अधिक शर्तें तथाकथित बी-फ़ाइलों में प्रदान की जा सकती हैं।[18] अनुक्रम फ़ील्ड उन अनुक्रमों के बीच कोई अंतर नहीं करता है जो सीमित हैं लेकिन प्रदर्शित करने के लिए अभी भी बहुत लंबे हैं और जो अनुक्रम अनंत हैं। यह निर्णय लेने में सहायता के लिए, आपको फ़िनी, पूर्ण, या अधिक के लिए कीवर्ड फ़ील्ड को देखना होगा। यह निर्धारित करने के लिए कि दिए गए मान किस n से मेल खाते हैं, ऑफसेट फ़ील्ड देखें, जो दिए गए पहले पद के लिए n देता है।
- नाम
- नाम फ़ील्ड में आमतौर पर अनुक्रम के लिए सबसे सामान्य नाम और कभी-कभी सूत्र भी होता है। उदाहरण के लिए, 1, 8, 27, 64, 125, 216, 343, 512, (A000578) को घन (बीजगणित) नाम दिया गया है: a(n) = n^3. .
- टिप्पणियाँ
- टिप्पणी फ़ील्ड उस अनुक्रम के बारे में जानकारी के लिए है जो किसी भी अन्य फ़ील्ड में बिल्कुल फिट नहीं बैठता है। टिप्पणियाँ फ़ील्ड अक्सर विभिन्न अनुक्रमों और अनुक्रम के लिए कम स्पष्ट अनुप्रयोगों के बीच दिलचस्प संबंधों को इंगित करती हैं। उदाहरण के लिए, लेखराज बीडासी ने A000578 पर टिप्पणी में लिखा है कि घन संख्याएं त्रिभुज के भीतर क्रिस-क्रॉसिंग सेवियन से उत्पन्न त्रिकोणों की कुल संख्या की भी गणना करती हैं ताकि इसके दो पक्ष प्रत्येक एन-विभाजित हों, जबकि नील स्लोएन केंद्रित हेक्सागोनल संख्याओं के बीच अप्रत्याशित संबंध को इंगित करता है (A003215) और दूसरा बेसेल बहुपद (A001498) A003215 पर टिप्पणी में।
- संदर्भ
- मुद्रित दस्तावेजों (किताबें, कागजात, ...) के संदर्भ।
- लिंक
- ऑनलाइन संसाधनों के लिए लिंक, यानी यूनिफ़ॉर्म रिसोर्स लोकेटर। ये हो सकते हैं:
- पत्रिकाओं में लागू लेखों के संदर्भ
- सूचकांक से लिंक
- टेक्स्ट फ़ाइलों के लिंक जो मुख्य डेटाबेस लाइनों की तुलना में सूचकांकों की विस्तृत श्रृंखला पर अनुक्रम शब्द (दो कॉलम प्रारूप में) रखते हैं
- स्थानीय डेटाबेस निर्देशिकाओं में छवियों के लिंक जो अक्सर ग्राफ़ सिद्धांत से संबंधित संयुक्त पृष्ठभूमि प्रदान करते हैं
- कंप्यूटर कोड से संबंधित अन्य, व्यक्तियों या अनुसंधान समूहों द्वारा प्रदान किए गए विशिष्ट अनुसंधान क्षेत्रों में अधिक व्यापक सारणी
- FORMULA
- अनुक्रम के लिए सूत्र, पुनरावृत्ति संबंध, जनरेटिंग फ़ंक्शन आदि।
- उदाहरण
- अनुक्रम सदस्य मानों के कुछ उदाहरण।
- मेपल
- मेपल कंप्यूटर बीजगणित सिस्टम कोड।
- मेथेमेटिका
- वोल्फ्राम भाषा कोड।
- कार्यक्रम
- मूल रूप से मेपल कंप्यूटर बीजगणित प्रणाली और मैथमैटिका ओईआईएस में अनुक्रमों की गणना के लिए पसंदीदा कार्यक्रम थे, और उन दोनों के पास अपने स्वयं के फ़ील्ड लेबल हैं। As of 2016[update], 100,000 मैथमैटिका कार्यक्रमों के साथ मैथमेटिका सबसे लोकप्रिय विकल्प था, इसके बाद 50,000 PARI/GP कार्यक्रम, 35,000 मेपल कार्यक्रम और अन्य भाषाओं में 45,000 कार्यक्रम थे।
- जहां तक रिकॉर्ड के किसी अन्य भाग की बात है, यदि कोई नाम नहीं दिया गया है, तो योगदान (यहां: कार्यक्रम) अनुक्रम के मूल प्रस्तुतकर्ता द्वारा लिखा गया था।
- क्रॉसरेफ़्स
- मूल प्रस्तुतकर्ता द्वारा उत्पन्न अनुक्रम क्रॉस-रेफरेंस को आमतौर पर सीएफ द्वारा दर्शाया जाता है।
- नए अनुक्रमों को छोड़कर, देखें फ़ील्ड में अनुक्रम के शब्दकोषीय क्रम (इसके संदर्भ) के बारे में जानकारी भी शामिल है और हमारे उदाहरण में करीबी A संख्याओं (A046967, A046968, A046969, A046971, A046972, A046973) वाले अनुक्रमों के लिंक प्रदान करता है। निम्न तालिका हमारे उदाहरण अनुक्रम, A046970 का संदर्भ दिखाती है:
A016623 | 3, 8, 3, 9, 4, 5, 2, 3, 1, 2, ... | Decimal expansion of ln(93/2). |
---|---|---|
A046543 | 1, 1, 1, 3, 8, 3, 10, 1, 110, 3, 406, 3 | First numerator and then denominator of the central elements of the 1/3-Pascal triangle (by row). |
A035292 | 1, 3, 8, 3, 12, 24, 16, 3, 41, 36, 24, ... | Number of similar sublattices of Z4 of index n2. |
A046970 | 1, −3, −8, −3, −24, 24, −48, −3, −8, 72, ... | Generated from Riemann zeta function... |
A058936 | 0, 1, 3, 8, 3, 30, 20, 144, 90, 40, 840, 504, 420, 5760, 3360, 2688, 1260 |
Decomposition of Stirling's S(n, 2) based on associated numeric partitions. |
A002017 | 1, 1, 1, 0, −3, −8, −3, 56, 217, 64, −2951, −12672, ... | Expansion of exp(sin x). |
A086179 | 3, 8, 4, 1, 4, 9, 9, 0, 0, 7, 5, 4, 3, 5, 0, 7, 8 | Decimal expansion of upper bound for the r-values supporting stable period-3 orbits in the logistic map. |
- कीवर्ड
- OEIS के पास अधिकतर चार-अक्षर वाले कीवर्ड का अपना मानक सेट है जो प्रत्येक अनुक्रम की विशेषता बताता है:[19]
- आवंटित ए-नंबर जिसे उपयोगकर्ता के लिए अलग रखा गया है लेकिन जिसके लिए प्रविष्टि अभी तक अनुमोदित नहीं की गई है (और शायद अभी तक लिखी नहीं गई है)।
- आधार गणना के परिणाम विशिष्ट स्थिति संकेतन पर निर्भर करते हैं। उदाहरण के लिए, 2, 3, 5, 7, 11, 101, 131, 151, 181... A002385 आधार की परवाह किए बिना अभाज्य संख्याएँ हैं, लेकिन वे विशेष रूप से आधार 10 में पैलिंड्रोमिक अभाज्य हैं। उनमें से अधिकांश बाइनरी में पैलिंड्रोमिक अभाज्य नहीं हैं। कुछ अनुक्रम इस कीवर्ड को इस आधार पर रेट करते हैं कि उन्हें कैसे परिभाषित किया गया है। उदाहरण के लिए, मेर्सन प्रीमियम 3, 7, 31, 127, 8191, 131071, ... {{OEIS link|A000668}यदि 2^n − 1 के रूप के अभाज्य के रूप में परिभाषित किया गया है तो } आधार का मूल्यांकन नहीं करता है। हालाँकि, बाइनरी में पुनर्पुनिट अभाज्य के रूप में परिभाषित, अनुक्रम कीवर्ड आधार को रेट करेगा।
- संक्षिप्त अनुक्रम किसी भी विश्लेषण के लिए बहुत छोटा है, उदाहरण के लिए, A079243, ऑर्डर एन के सेट (गणित) पर सहयोगी गैर- विनिमेय गैर-एंटी- जोड़नेवाला विरोधी क्रमविनिमेय बंद बाइनरी ऑपरेशन के समरूपता वर्ग की संख्या।
- 'बदला हुआ' पिछले दो सप्ताह में क्रम बदल गया है।
- 'cofr' अनुक्रम निरंतर भिन्न का प्रतिनिधित्व करता है, उदाहरण के लिए e का निरंतर भिन्न विस्तार (A003417) या π (A001203).
- विपक्ष अनुक्रम गणितीय स्थिरांक का दशमलव विस्तार है, जैसे ई (A001113) या π (A000796).
- कोर अनुक्रम जो गणित की शाखा के लिए मूलभूत महत्व का है, जैसे अभाज्य संख्याएँ (A000040), फाइबोनैचि अनुक्रम (A000045), वगैरह।
- मृत इस कीवर्ड का उपयोग कागजात या किताबों में दिखाई देने वाले गलत अनुक्रमों या मौजूदा अनुक्रमों के डुप्लिकेट के लिए किया जाता है। उदाहरण के लिए, A088552 वैसा ही है जैसा कि A000668.
- महत्वहीन अनुक्रमों के लिए अधिक व्यक्तिपरक कीवर्ड में से गूंगा, जो सीधे गणित से संबंधित हो भी सकता है और नहीं भी, जैसे लोकप्रिय संस्कृति संदर्भ, इंटरनेट पहेलियों से मनमाना अनुक्रम, और संख्यात्मक कीपैड प्रविष्टियों से संबंधित अनुक्रम। A001355, पाई और ई के मिश्रित अंक महत्व की कमी का उदाहरण है, और A085808, प्राइस इज़ राइट व्हील (यू.एस. गेम शो द प्राइस इज़ राइट (यू.एस. गेम शो) में प्रयुक्त शोकेस तसलीम व्हील पर संख्याओं का क्रम) गैर-गणित-संबंधित अनुक्रम का उदाहरण है, जो मुख्य रूप से सामान्य ज्ञान के उद्देश्यों के लिए रखा गया है।[20]
- आसान अनुक्रम की शर्तों की गणना आसानी से की जा सकती है। शायद इस कीवर्ड के लिए सबसे उपयुक्त अनुक्रम 1, 2, 3, 4, 5, 6, 7, ... है A000027, जहां प्रत्येक पद पिछले पद से 1 अधिक है। कीवर्ड आसान कभी-कभी फॉर्म एफ (एम) के अनुक्रम प्राइम्स को दिया जाता है जहां एफ (एम) आसानी से गणना की जाने वाली फ़ंक्शन है। (यद्यपि बड़े m के लिए f(m) की गणना करना आसान है, फिर भी यह निर्धारित करना बहुत मुश्किल हो सकता है कि f(m) अभाज्य है या नहीं)।
- 'eigen' eigenvalues का क्रम।
- 'फिनी' अनुक्रम सीमित है, हालाँकि इसमें अभी भी प्रदर्शित किए जा सकने वाले शब्दों से अधिक शब्द हो सकते हैं। उदाहरण के लिए, का अनुक्रम फ़ील्ड A105417 सभी पदों का लगभग एक-चौथाई ही दिखाता है, लेकिन टिप्पणी में कहा गया है कि अंतिम पद 3888 है।
- फ़्रेक परिमेय संख्याओं को दर्शाने वाले भिन्नों के अंशों या हरों का क्रम। इस कीवर्ड के साथ किसी भी अनुक्रम को इसके अंश या हर के मिलान अनुक्रम से क्रॉस-रेफ़र किया जाना चाहिए, हालांकि मिस्र के भिन्नों के अनुक्रमों के लिए इसे हटा दिया जा सकता है, जैसे कि A069257, जहां अंशों का क्रम होगा A000012. इस कीवर्ड का उपयोग निरंतर भिन्नों के अनुक्रम के लिए नहीं किया जाना चाहिए; इसके बजाय उस उद्देश्य के लिए कॉफ़र का उपयोग किया जाना चाहिए।
- पूर्ण अनुक्रम फ़ील्ड संपूर्ण अनुक्रम प्रदर्शित करता है। यदि किसी अनुक्रम में कीवर्ड पूर्ण है, तो इसमें कीवर्ड फ़िनी भी होना चाहिए। पूर्ण रूप से दिए गए परिमित अनुक्रम का उदाहरण सुपरसिंगुलर प्राइम (चांदनी सिद्धांत) का है A002267, जिनमें से ठीक पंद्रह हैं।
- कठिन अनुक्रम की शर्तों की गणना आसानी से नहीं की जा सकती, यहां तक कि कच्ची संख्या क्रंचिंग शक्ति के साथ भी। इस कीवर्ड का उपयोग अक्सर अनसुलझी समस्याओं से संबंधित अनुक्रमों के लिए किया जाता है, जैसे कि कितने n-sphere|n-spheres समान आकार के दूसरे n-sphere को छू सकते हैं? A001116 पहले दस ज्ञात समाधानों को सूचीबद्ध करता है।
- ग्राफ़ ऑडियो के साथ अनुक्रम सुनें जो विशेष रूप से दिलचस्प और/या सुंदर माना जाता है, कुछ उदाहरण OEIS साइट पर एकत्र किए गए हैं।
- कम कम दिलचस्प क्रम।
- ग्राफ़ विज़ुअल के साथ अनुक्रम देखें जिसे विशेष रूप से दिलचस्प और/या सुंदर माना जाता है। कई हजारों में से दो उदाहरण हैं A331124 A347347।
- अनुक्रम के और अधिक पद वांछित हैं। पाठक एक्सटेंशन सबमिट कर सकते हैं।
- मल्टी अनुक्रम गुणक फ़ंक्शन से मेल खाता है। पद a(1) 1 होना चाहिए, और पद a(mn) की गणना a(m) को a से गुणा करके की जा सकती है (n) यदि m और n सहअभाज्य हैं। उदाहरण के लिए, में A046970, a(12) = a(3)a(4) = −8 × −3.
- 'नया' उन अनुक्रमों के लिए जो पिछले कुछ हफ़्तों में जोड़े गए थे, या जिनका हाल ही में बड़ा विस्तार हुआ था। नए अनुक्रम सबमिट करने के लिए इस कीवर्ड को वेब फॉर्म में चेकबॉक्स नहीं दिया गया है; स्लोएन का प्रोग्राम जहां लागू हो वहां इसे डिफ़ॉल्ट रूप से जोड़ता है।
- असाधारण अच्छे अनुक्रमों के लिए शायद 'अच्छा' सभी में से सबसे अधिक व्यक्तिपरक कीवर्ड है।
- 'नॉन' अनुक्रम में गैर-नकारात्मक पूर्णांक शामिल हैं (इसमें शून्य भी शामिल हो सकते हैं)। उन अनुक्रमों के बीच कोई अंतर नहीं किया जाता है जिनमें गैर-नकारात्मक संख्याएँ केवल चुने गए ऑफसेट के कारण होती हैं (उदाहरण के लिए, n3, घन, जो n = 0 से आगे की ओर सभी गैर-नकारात्मक हैं) और वे जो परिभाषा के अनुसार पूरी तरह से गैर-नकारात्मक हैं (उदाहरण के लिए, n2, वर्ग).
- अस्पष्ट अनुक्रम को अस्पष्ट माना जाता है और बेहतर परिभाषा की आवश्यकता है।
- पुनर्नवीनीकरण जब संपादक इस बात पर सहमत होते हैं कि नया प्रस्तावित अनुक्रम OEIS में जोड़ने लायक नहीं है, तो संपादक केवल कीवर्ड लाइन को कीवर्ड के साथ छोड़कर प्रविष्टि को खाली कर देता है: पुनर्नवीनीकरण। फिर ए-नंबर किसी अन्य नए अनुक्रम के लिए आवंटन के लिए उपलब्ध हो जाता है।
- संकेत अनुक्रम के कुछ (या सभी) मान नकारात्मक हैं। प्रविष्टि में संकेतों के साथ हस्ताक्षरित फ़ील्ड और अनुक्रम फ़ील्ड दोनों शामिल हैं जिसमें निरपेक्ष मान फ़ंक्शन के माध्यम से पारित सभी मान शामिल हैं।
- टैबएफ संख्याओं की अनियमित (या अजीब आकार की) श्रृंखला जिसे पंक्ति दर पंक्ति पढ़कर क्रम बनाया जाता है। उदाहरण के लिए, A071031, नियम 62 द्वारा उत्पन्न सेलुलर ऑटोमेटन की क्रमिक स्थिति देने वाली पंक्तियों द्वारा पढ़ा गया त्रिभुज।
- सारणी संख्याओं की ज्यामितीय व्यवस्था, जैसे त्रिभुज या वर्ग, पंक्ति दर पंक्ति पढ़कर प्राप्त किया गया अनुक्रम। पंक्तियों द्वारा पढ़ा गया पास्कल का त्रिभुज इसका सर्वोत्कृष्ट उदाहरण है, A007318.
- uned अनुक्रम संपादित नहीं किया गया है लेकिन यह OEIS में शामिल करने लायक हो सकता है। अनुक्रम में कम्प्यूटेशनल या मुद्रण संबंधी त्रुटियाँ हो सकती हैं। योगदानकर्ताओं को इन अनुक्रमों को संपादित करने के लिए प्रोत्साहित किया जाता है।
- अज्ञात अनुक्रम के बारे में बहुत कम जानकारी है, यहां तक कि इसे बनाने वाले सूत्र के बारे में भी नहीं। उदाहरण के लिए, A072036, जिसे इंटरनेट ओरेकल पर विचार करने के लिए प्रस्तुत किया गया था।
- चलना चालों को गिना जाता है (या स्वयं से बचने वाली चाल|स्वयं से बचने वाली राहें)।
- शब्द किसी विशिष्ट भाषा के शब्दों पर निर्भर करता है। उदाहरण के लिए, शून्य, एक, दो, तीन, चार, पांच, आदि। उदाहरण के लिए, 4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8... A005589, रिक्त स्थान और हाइफ़न को छोड़कर, n के अंग्रेजी नाम में अक्षरों की संख्या।
- कुछ कीवर्ड परस्पर अनन्य हैं, अर्थात्: कोर और डंब, आसान और कठिन, पूर्ण और अधिक, कम और अच्छा, और नॉन और साइन।
- ओफ़्सेट
- ऑफसेट दिए गए पहले पद का सूचकांक है। कुछ अनुक्रमों के लिए, ऑफसेट स्पष्ट है। उदाहरण के लिए, यदि हम वर्ग संख्याओं के अनुक्रम को 0, 1, 4, 9, 16, 25 ... के रूप में सूचीबद्ध करते हैं, तो ऑफसेट 0 है; जबकि यदि हम इसे 1, 4, 9, 16, 25 ... के रूप में सूचीबद्ध करते हैं, तो ऑफसेट 1 है। डिफ़ॉल्ट ऑफसेट 0 है, और ओईआईएस में अधिकांश अनुक्रमों में या तो 0 या 1 का ऑफसेट है। अनुक्रम A073502, सबसे छोटी पंक्ति के योग के साथ अभाज्य प्रविष्टियों (1 को अभाज्य के रूप में मानते हुए) के साथ n × n जादुई वर्ग के लिए जादुई स्थिरांक, ऑफसेट 3 के साथ अनुक्रम का उदाहरण है, और A072171, दृश्य परिमाण n के तारों की संख्या। ऑफसेट -1 वाले अनुक्रम का उदाहरण है। कभी-कभी इस बात पर असहमति हो सकती है कि अनुक्रम के प्रारंभिक शब्द क्या हैं, और तदनुसार ऑफसेट क्या होना चाहिए। आलसी कैटरर के अनुक्रम के मामले में, आप पैनकेक को एन कट्स के साथ अधिकतम टुकड़ों में काट सकते हैं, ओईआईएस अनुक्रम को 1, 2, 4, 7, 11, 16, 22, 29, 37, .. के रूप में देता है। . A000124, ऑफसेट 0 के साथ, जबकि मैथवर्ल्ड अनुक्रम को 2, 4, 7, 11, 16, 22, 29, 37, ... (निहित ऑफसेट 1) के रूप में देता है। यह तर्क दिया जा सकता है कि पैनकेक में कोई कटौती नहीं करना तकनीकी रूप से कई कटौती है, अर्थात् n = 0, लेकिन यह भी तर्क दिया जा सकता है कि बिना काटा हुआ पैनकेक समस्या के लिए अप्रासंगिक है। हालाँकि ऑफ़सेट आवश्यक फ़ील्ड है, कुछ योगदानकर्ता यह जांचने की जहमत नहीं उठाते कि 0 का डिफ़ॉल्ट ऑफ़सेट उनके द्वारा भेजे जा रहे अनुक्रम के लिए उपयुक्त है या नहीं। आंतरिक प्रारूप वास्तव में ऑफ़सेट के लिए दो नंबर दिखाता है। पहला ऊपर वर्णित संख्या है, जबकि दूसरा पहली प्रविष्टि (1 से गिनती) के सूचकांक का प्रतिनिधित्व करता है जिसका पूर्ण मान 1 से अधिक है। इस दूसरे मान का उपयोग अनुक्रम की खोज की प्रक्रिया को तेज करने के लिए किया जाता है। इस प्रकार A000001, जो 1, 1, 1, 2 से शुरू होता है, पहली प्रविष्टि a(1) का प्रतिनिधित्व करती है, जिसमें ऑफसेट फ़ील्ड का आंतरिक मान '1, 4' है।
- लेखक
- अनुक्रम का लेखक वह व्यक्ति है जिसने अनुक्रम प्रस्तुत किया है, भले ही अनुक्रम प्राचीन काल से ज्ञात हो। प्रस्तुतकर्ता(ओं) का नाम पहला नाम (पूर्ण रूप से लिखा गया), मध्य प्रारंभिक (यदि लागू हो) और अंतिम नाम दिया गया है; यह संदर्भ क्षेत्रों में नाम लिखे जाने के तरीके के विपरीत है। सबमिट करने वाले का ई-मेल पता भी 2011 से पहले का दिया गया है, जिसमें कुछ अपवादों जैसे कि सहयोगी संपादकों के लिए या यदि कोई ई-मेल पता मौजूद नहीं है, के साथ @ वर्ण को (एटी) से बदल दिया गया है। अब OEIS की नीति यह हो गई है कि वह ई-मेल पते को क्रम में प्रदर्शित न करे। A055000 के बाद अधिकांश अनुक्रमों के लिए, लेखक फ़ील्ड में अनुक्रम में प्रस्तुतकर्ता द्वारा भेजी गई तारीख भी शामिल होती है।
- विस्तार
- उन लोगों के नाम जिन्होंने अनुक्रम को बढ़ाया (इसमें और शब्द जोड़े) या अनुक्रम के शब्दों को सही किया, इसके बाद विस्तार की तारीख दी गई।
स्लोएन का अंतर
2009 में, प्रत्येक पूर्णांक संख्या के महत्व को मापने के लिए फिलिप गुग्लिलमेट्टी द्वारा OEIS डेटाबेस का उपयोग किया गया था।[21] दाहिनी ओर के कथानक में दिखाया गया परिणाम दो अलग-अलग बिंदु बादलों के बीच स्पष्ट अंतर दिखाता है,[22] दिलचस्प संख्या विरोधाभास (नीले बिंदु) और दिलचस्प संख्याएँ जो OEIS के अनुक्रमों में तुलनात्मक रूप से अधिक बार घटित होती हैं। इसमें अनिवार्य रूप से अभाज्य संख्याएँ (लाल), फॉर्म ए की संख्याएँ शामिल हैंn (हरा) और अत्यधिक मिश्रित संख्याएँ (पीला)। इस घटना का अध्ययन निकोलस गौव्रिट, जीन पॉल डेलहाये और हेक्टर जेनिल द्वारा किया गया था, जिन्होंने अभाज्य संख्याओं, समता (गणित) संख्याओं, ज्यामितीय और फाइबोनैचि-प्रकार के अनुक्रमों आदि के लिए कृत्रिम प्राथमिकता के आधार पर एल्गोरिथम जटिलता और सामाजिक कारकों द्वारा अंतर के संदर्भ में दो बादलों की गति को समझाया।[23] स्लोअन के अंतर को 2013 में नंबरफ़ाइल वीडियो में दिखाया गया था।[24]
यह भी देखें
टिप्पणियाँ
- ↑ "Goals of The OEIS Foundation Inc". The OEIS Foundation Inc. Archived from the original on 2013-12-06. Retrieved 2017-11-06.
- ↑ Registration is required for editing entries or submitting new entries to the database
- ↑ "The OEIS End-User License Agreement - OeisWiki". oeis.org. Retrieved 2023-02-26.
- ↑ "ओईआईएस में आईपी का ओईआईएस फाउंडेशन इंक को स्थानांतरण।". Archived from the original on 2013-12-06. Retrieved 2010-06-01.
- ↑ "The On-Line Encyclopedia of Integer Sequences (OEIS)".
- ↑ Borwein, Jonathan M. (2017). "Adventures with the OEIS". In Andrews, George E.; Garvan, Frank (eds.). विश्लेषणात्मक संख्या सिद्धांत, मॉड्यूलर फॉर्म और क्यू-हाइपरजियोमेट्रिक श्रृंखला. Springer Proceedings in Mathematics & Statistics. Vol. 221. Cham: Springer International Publishing. pp. 123–138. doi:10.1007/978-3-319-68376-8_9. ISBN 978-3-319-68375-1. ISSN 2194-1009.
- ↑ Gleick, James (January 27, 1987). "एक 'यादृच्छिक दुनिया' में, वह पैटर्न एकत्र करता है". The New York Times. p. C1.
- ↑ Journal of Integer Sequences (ISSN 1530-7638)
- ↑ "संपादक - मंडल". On-Line Encyclopedia of Integer Sequences.
- ↑ Neil Sloane (2010-11-17). "OEIS का नया संस्करण". Archived from the original on 2016-02-07. Retrieved 2011-01-21.
- ↑ Neil J. A. Sloane (2011-11-14). "[seqfan] A200000". SeqFan mailing list. Retrieved 2011-11-22.
- ↑ Neil J. A. Sloane (2011-11-22). "[seqfan] A200000 chosen". SeqFan mailing list. Retrieved 2011-11-22.
- ↑ "सुझाई गई परियोजनाएँ". OEIS wiki. Retrieved 2011-11-22.
- ↑ "Welcome: Arrangement of the Sequences in Database". OEIS Wiki. Retrieved 2016-05-05.
- ↑ Sloane, N. J. A. "मेरा पसंदीदा पूर्णांक अनुक्रम" (PDF). p. 10. Archived from the original (PDF) on 2018-05-17.
- ↑ N.J.A. Sloane. "उत्तर में प्रयुक्त शब्दों की व्याख्या". OEIS.
- ↑ "OEIS Style sheet".
- ↑ "B-Files".
- ↑ "Explanation of Terms Used in Reply From". On-Line Encyclopedia of Integer Sequences.
- ↑ The person who submitted A085808 did so as an example of a sequence that should not have been included in the OEIS. Sloane added it anyway, surmising that the sequence "might appear one day on a quiz."
- ↑ Guglielmetti, Philippe (24 August 2008). "Chasse aux nombres acratopèges". Pourquoi Comment Combien (in français).
- ↑ Guglielmetti, Philippe (18 April 2009). "La minéralisation des nombres". Pourquoi Comment Combien (in français). Retrieved 25 December 2016.
- ↑ Gauvrit, Nicolas; Delahaye, Jean-Paul; Zenil, Hector (2011). "स्लोएन्स गैप. गणितीय और सामाजिक कारक OEIS में संख्याओं के वितरण की व्याख्या करते हैं". Journal of Humanistic Mathematics. 3: 3–19. arXiv:1101.4470. Bibcode:2011arXiv1101.4470G. doi:10.5642/jhummath.201301.03. S2CID 22115501.
- ↑ "स्लोएन्स गैप" (video). Numberphile. 2013-10-15. Archived from the original on 2021-11-17.
With Dr. James Grime, University of Nottingham
संदर्भ
- Borwein, J.; Corless, R. (1996). "The Encyclopedia of Integer Sequences (N. J. A. Sloane and Simon Plouffe)". SIAM Review. 38 (2): 333–337. doi:10.1137/1038058.
- Catchpole, H. (2004). "Exploring the number jungle online". ABC Science. Australian Broadcasting Corporation.
- Delarte, A. (November 11, 2004). "Mathematician reaches 100k milestone for online integer archive". The South End: 5.
- Hayes, B. (1996). "A Question of Numbers" (PDF). American Scientist. 84 (1): 10–14. Bibcode:1996AmSci..84...10H. Archived from the original (PDF) on 2015-10-05. Retrieved 2010-06-01.
- Peterson, I. (2003). "Sequence Puzzles" (PDF). Science News. 163 (20). Archived from the original (PDF) on 2017-05-10. Retrieved 2016-12-24.
- Rehmeyer, J. (2010). "The Pattern Collector — Science News". Science News. www.sciencenews.org. Archived from the original on 2013-10-14. Retrieved 2010-08-08.
अग्रिम पठन
- Roberts, S. (May 21, 2023), "What Number Comes Next? The Encyclopedia of Integer Sequences Knows.", The New York Times, retrieved 21 May 2023
- Sloane, N. J. A. (1999). "My favorite integer sequences" (PDF). In Ding, C.; Helleseth, T.; Niederreiter, H. (eds.). Sequences and their Applications (Proceedings of SETA '98). London: Springer-Verlag. pp. 103–130. arXiv:math/0207175. Bibcode:2002math......7175S.
- Sloane, N. J. A. (2003). "The On-Line Encyclopedia of Integer Sequences" (PDF). Notices of the American Mathematical Society. 50 (8): 912–915.
- Sloane, N. J. A.; Plouffe, S. (1995). The Encyclopedia of Integer Sequences. San Diego: Academic Press. ISBN 0-12-558630-2.
- Zabolotskii, A. (2022). "The On-Line Encyclopedia of Integer Sequences in 2021". Mat. Pros. Series 3. 8: 199–212.
- Billey, Sara C.; Tenner, Bridget E. (2013). "Fingerprint databases for theorems" (PDF). Notices of the American Mathematical Society. 60 (8): 1034–1039. arXiv:1304.3866. Bibcode:2013arXiv1304.3866B. doi:10.1090/noti1029. S2CID 14435520.
बाहरी संबंध
- Official website
- Wiki at OEIS