कारक विश्लेषण

From Vigyanwiki

कारक विश्लेषण सांख्यिकी पद्धति है जिसका उपयोग प्रेक्षित, सहसंबद्ध चर (गणित) के बीच विचरण का वर्णन करने के लिए संभावित रूप से कम संख्या में न देखे गए चरों के संदर्भ में किया जाता है जिन्हें कारक कहा जाता है। उदाहरण के लिए, यह संभव है कि छह देखे गए चरों में भिन्नताएं मुख्य रूप से दो न देखे गए (अंतर्निहित) चरों में भिन्नताएं दर्शाती हैं। कारक विश्लेषण न देखे गए अव्यक्त चरों की प्रतिक्रिया में ऐसी संयुक्त विविधताओं की खोज करता है। देखे गए चर को आंकड़ों के संदर्भ में संभावित कारकों और त्रुटियों और अवशेषों के रैखिक संयोजन के रूप में तैयार किया गया है, इसलिए कारक विश्लेषण को चर-में-त्रुटि मॉडल के विशेष मामले के रूप में माना जा सकता है।[1] सीधे शब्दों में कहें तो, किसी वेरिएबल का फैक्टर लोडिंग उस सीमा को निर्धारित करता है, जिस हद तक वेरिएबल किसी दिए गए फैक्टर से संबंधित है।[2] कारक विश्लेषणात्मक तरीकों के पीछे सामान्य तर्क यह है कि देखे गए चर के बीच अन्योन्याश्रितताओं के बारे में प्राप्त जानकारी का उपयोग बाद में डेटासेट में चर के सेट को कम करने के लिए किया जा सकता है। कारक विश्लेषण का उपयोग आमतौर पर साइकोमेट्रिक्स, व्यक्तित्व मनोविज्ञान, जीव विज्ञान, विपणन, उत्पाद प्रबंधन, संचालन अनुसंधान, वित्त और यंत्र अधिगम में किया जाता है। यह उन डेटा सेटों से निपटने में मदद कर सकता है जहां बड़ी संख्या में देखे गए चर हैं जो अंतर्निहित/अव्यक्त चर की छोटी संख्या को प्रतिबिंबित करते हैं। यह सबसे अधिक उपयोग की जाने वाली अंतर-निर्भरता तकनीकों में से है और इसका उपयोग तब किया जाता है जब चर का प्रासंगिक सेट व्यवस्थित अंतर-निर्भरता दिखाता है और इसका उद्देश्य उन अव्यक्त कारकों का पता लगाना है जो समानता बनाते हैं।

सांख्यिकीय मॉडल

परिभाषा

मॉडल सेट को समझाने का प्रयास करता है प्रत्येक में अवलोकन के सेट वाले व्यक्ति सामान्य तथ्य () जहां प्रति इकाई प्रेक्षणों की तुलना में प्रति इकाई कम कारक हैं (). प्रत्येक व्यक्ति के पास है अपने स्वयं के सामान्य कारकों के, और ये कारक लोडिंग मैट्रिक्स के माध्यम से टिप्पणियों से संबंधित हैं (), एकल अवलोकन के अनुसार, के अनुसार

कहाँ

  • का मान है का अवलोकन वें व्यक्ति,
  • के लिए अवलोकन माध्य है वें अवलोकन,
  • के लिए लोड हो रहा है का अवलोकन वें कारक,
  • का मान है का वां कारक वें व्यक्ति, और
  • है माध्य शून्य और परिमित विचरण के साथ अवलोकित स्टोकेस्टिक त्रुटि पद।

मैट्रिक्स नोटेशन में

जहां अवलोकन मैट्रिक्स , मैट्रिक्स लोड हो रहा है , कारक मैट्रिक्स , त्रुटि शब्द मैट्रिक्स और माध्य मैट्रिक्स जिससे वां तत्व बस है .

इसके अलावा हम निम्नलिखित धारणाएँ भी लागू करेंगे :

  1. और स्वतंत्र हैं.
  2. ; कहाँ बहुभिन्नरूपी यादृच्छिक चर#अपेक्षित मान है
  3. कहाँ सहप्रसरण मैट्रिक्स है, यह सुनिश्चित करने के लिए कि कारक असंबंधित हैं, और पहचान मैट्रिक्स है.

कल्पना करना . तब

और इसलिए, लगाई गई शर्तों 1 और 2 से ऊपर, और , देना

या, सेटिंग ,

ध्यान दें कि किसी भी ऑर्थोगोनल मैट्रिक्स के लिए , अगर हम सेट करते हैं और , कारक होने और कारक लोडिंग के मानदंड अभी भी कायम हैं। इसलिए कारकों और कारक लोडिंग का सेट केवल ऑर्थोगोनल परिवर्तन तक अद्वितीय है।

उदाहरण

मान लीजिए कि मनोवैज्ञानिक की परिकल्पना है कि बुद्धि (विशेषता) दो प्रकार की होती है, मौखिक बुद्धि और गणितीय बुद्धि, जिनमें से कोई भी प्रत्यक्ष रूप से नहीं देखी जाती है।Template:Explanatory footnote 1000 छात्रों के 10 अलग-अलग शैक्षणिक क्षेत्रों में से प्रत्येक के परीक्षा अंकों में परिकल्पना के साक्ष्य मांगे गए हैं। यदि प्रत्येक छात्र को बड़ी आबादी (सांख्यिकी) से यादृच्छिक रूप से चुना जाता है, तो प्रत्येक छात्र के 10 अंक यादृच्छिक चर होते हैं। मनोवैज्ञानिक की परिकल्पना कह सकती है कि 10 अकादमिक क्षेत्रों में से प्रत्येक के लिए, उन सभी छात्रों के समूह पर औसत स्कोर जो मौखिक और गणितीय बुद्धि के लिए मूल्यों की कुछ सामान्य जोड़ी साझा करते हैं, कुछ स्थिरांक (गणित) उनकी मौखिक बुद्धि के स्तर का गुना है और अन्य स्थिरांक उनके गणितीय बुद्धि के स्तर का गुना है, यानी, यह उन दो कारकों का रैखिक संयोजन है। किसी विशेष विषय के लिए संख्याएँ, जिनके द्वारा अपेक्षित स्कोर प्राप्त करने के लिए दो प्रकार की बुद्धिमत्ता को गुणा किया जाता है, परिकल्पना द्वारा सभी बुद्धिमत्ता स्तर के जोड़े के लिए समान मानी जाती हैं, और इस विषय के लिए कारक लोडिंग कहलाती हैं। उदाहरण के लिए, परिकल्पना यह मान सकती है कि खगोल विज्ञान के क्षेत्र में अनुमानित औसत छात्र की योग्यता है

{10 × छात्र की मौखिक बुद्धि} + {6 × छात्र की गणितीय बुद्धि}।

संख्या 10 और 6 खगोल विज्ञान से जुड़े कारक लोडिंग हैं। अन्य शैक्षणिक विषयों में अलग-अलग कारक लोड हो सकते हैं।

ऐसा माना जाता है कि मौखिक और गणितीय बुद्धि की समान डिग्री वाले दो छात्रों की खगोल विज्ञान में अलग-अलग मापी गई योग्यताएं हो सकती हैं क्योंकि व्यक्तिगत योग्यताएं औसत योग्यताओं (ऊपर अनुमानित) से भिन्न होती हैं और माप त्रुटि के कारण ही भिन्न होती हैं। इस तरह के मतभेदों को सामूहिक रूप से त्रुटि कहा जाता है - सांख्यिकीय शब्द जिसका अर्थ है वह मात्रा जिसके द्वारा किसी व्यक्ति को मापा जाता है, जो उसकी बुद्धिमत्ता के स्तर के लिए औसत या अनुमानित से भिन्न होता है (आंकड़ों में त्रुटियां और अवशेष देखें)।

कारक विश्लेषण में जाने वाला अवलोकन योग्य डेटा 1000 छात्रों में से प्रत्येक के 10 अंक, कुल 10,000 नंबर होंगे। डेटा से प्रत्येक छात्र की दो प्रकार की बुद्धि के कारक लोडिंग और स्तर का अनुमान लगाया जाना चाहिए।

उसी उदाहरण का गणितीय मॉडल

निम्नलिखित में, मैट्रिक्स को अनुक्रमित चर द्वारा दर्शाया जाएगा। विषय सूचकांकों को अक्षरों का उपयोग करके दर्शाया जाएगा , और , से चलने वाले मानों के साथ को जो के बराबर है उपरोक्त उदाहरण में. कारक सूचकांकों को अक्षरों का उपयोग करके दर्शाया जाएगा , और , से चलने वाले मानों के साथ को जो के बराबर है उपरोक्त उदाहरण में. उदाहरण या नमूना सूचकांकों को अक्षरों का उपयोग करके दर्शाया जाएगा , और , से चलने वाले मानों के साथ को . उपरोक्त उदाहरण में, यदि नमूना विद्यार्थियों ने भाग लिया परीक्षा, छात्र इसके लिए स्कोर करते हैं की परीक्षा दी है . कारक विश्लेषण का उद्देश्य चरों के बीच सहसंबंधों को चिह्नित करना है जिनमें से विशेष उदाहरण, या अवलोकनों का समूह हैं। चर को समान स्तर पर रखने के लिए, उन्हें मानक स्कोर में सामान्यीकरण (सांख्यिकी) किया जाता है :

जहां नमूना माध्य है:

और नमूना विचरण इस प्रकार दिया गया है:

इस विशेष नमूने के लिए कारक विश्लेषण मॉडल तब है:

या, अधिक संक्षेप में:

कहाँ

  • है वें छात्र की मौखिक बुद्धि,
  • है वें छात्र की गणितीय बुद्धि,
  • के लिए कारक लोडिंग हैं वें विषय, के लिए .

मैट्रिक्स (गणित) नोटेशन में, हमारे पास है

उस पैमाने को दोगुना करके देखें जिस पर मौखिक बुद्धिमत्ता - प्रत्येक कॉलम में पहला घटक है - मापा जाता है, और साथ ही मौखिक बुद्धिमत्ता के लिए कारक लोडिंग को आधा करने से मॉडल पर कोई फर्क नहीं पड़ता है। इस प्रकार, यह मानने से कोई व्यापकता नहीं खोती है कि मौखिक बुद्धि के लिए कारकों का मानक विचलन है . इसी प्रकार गणितीय बुद्धि के लिए भी। इसके अलावा, समान कारणों से, यह मानने से कोई व्यापकता नहीं खोती है कि दोनों कारक एक-दूसरे से असंबद्ध हैं। दूसरे शब्दों में:

कहाँ क्रोनकर डेल्टा है ( कब और कब ).त्रुटियों को कारकों से स्वतंत्र माना जाता है:

ध्यान दें, चूँकि किसी समाधान का कोई भी घुमाव भी समाधान है, इससे कारकों की व्याख्या करना कठिन हो जाता है। नीचे नुकसान देखें. इस विशेष उदाहरण में, यदि हम पहले से नहीं जानते हैं कि दो प्रकार की बुद्धि असंबद्ध हैं, तो हम दो कारकों की दो अलग-अलग प्रकार की बुद्धि के रूप में व्याख्या नहीं कर सकते हैं। भले ही वे असंबंधित हों, हम बिना किसी बाहरी तर्क के यह नहीं बता सकते कि कौन सा कारक मौखिक बुद्धि से मेल खाता है और कौन सा गणितीय बुद्धि से मेल खाता है।

लोडिंग का मान , औसत , और त्रुटियों की भिन्नताएँ प्रेक्षित डेटा को देखते हुए अनुमान लगाया जाना चाहिए और (कारकों के स्तर के बारे में धारणा किसी दिए गए के लिए तय की गई है ). मौलिक प्रमेय उपरोक्त शर्तों से प्राप्त किया जा सकता है:

बाईं ओर का शब्द है -सहसंबंध मैट्रिक्स की अवधि (ए के उत्पाद के रूप में प्राप्त मैट्रिक्स देखे गए डेटा के स्थानान्तरण के साथ मानकीकृत अवलोकनों का मैट्रिक्स, और इसका विकर्ण तत्व होंगे एस। दाईं ओर दूसरा पद विकर्ण मैट्रिक्स होगा जिसमें इकाई से कम पद होंगे। दाईं ओर पहला पद कम सहसंबंध मैट्रिक्स है और इसके विकर्ण मानों को छोड़कर सहसंबंध मैट्रिक्स के बराबर होगा जो एकता से कम होगा। कम सहसंबंध मैट्रिक्स के इन विकर्ण तत्वों को सांप्रदायिकताएं कहा जाता है (जो कि देखे गए चर में भिन्नता के अंश का प्रतिनिधित्व करते हैं जो कारकों के कारण होता है):

नमूना डेटा नमूनाकरण त्रुटियों, मॉडल की अपर्याप्तता आदि के कारण ऊपर दिए गए मौलिक समीकरण का बिल्कुल पालन नहीं किया जाएगा। उपरोक्त मॉडल के किसी भी विश्लेषण का लक्ष्य कारकों का पता लगाना है और लोडिंग जो डेटा को सर्वोत्तम रूप से फिट करता है। कारक विश्लेषण में, सर्वोत्तम फिट को सहसंबंध मैट्रिक्स के ऑफ-विकर्ण अवशेषों में न्यूनतम माध्य वर्ग त्रुटि के रूप में परिभाषित किया गया है:[3]

यह त्रुटि सहप्रसरण के ऑफ-विकर्ण घटकों को कम करने के बराबर है, जिसमें मॉडल समीकरणों में शून्य के अपेक्षित मान होते हैं। इसकी तुलना प्रमुख घटक विश्लेषण से की जानी चाहिए जो सभी अवशेषों की माध्य वर्ग त्रुटि को कम करने का प्रयास करता है।[3]हाई-स्पीड कंप्यूटर के आगमन से पहले, समस्या के अनुमानित समाधान खोजने के लिए काफी प्रयास किए गए थे, विशेष रूप से अन्य तरीकों से सांप्रदायिकताओं का अनुमान लगाने में, जो तब ज्ञात कम सहसंबंध मैट्रिक्स उत्पन्न करके समस्या को काफी सरल बनाता है। इसके बाद कारकों और लोडिंग का अनुमान लगाने के लिए इसका उपयोग किया गया। हाई-स्पीड कंप्यूटर के आगमन के साथ, न्यूनतमकरण की समस्या को पर्याप्त गति के साथ पुनरावृत्त रूप से हल किया जा सकता है, और सामुदायिकताओं की गणना पहले से आवश्यक होने के बजाय प्रक्रिया में की जाती है। सामान्यीकृत न्यूनतम अवशिष्ट विधि एल्गोरिथ्म इस समस्या के लिए विशेष रूप से उपयुक्त है, लेकिन समाधान खोजने का शायद ही यह एकमात्र पुनरावृत्त साधन है।

यदि समाधान कारकों को सहसंबंधित करने की अनुमति दी जाती है (उदाहरण के लिए 'ओब्लिमिन' रोटेशन में), तो संबंधित गणितीय मॉडल ऑर्थोगोनल निर्देशांक के बजाय तिरछा निर्देशांक का उपयोग करता है।

ज्यामितीय व्याख्या

प्रश्न पूछने के लिए 3 उत्तरदाताओं के लिए कारक विश्लेषण मापदंडों की ज्यामितीय व्याख्या। उत्तर इकाई वेक्टर द्वारा दर्शाया गया है , जिसे दो ऑर्थोनॉर्मल वैक्टर द्वारा परिभाषित विमान पर प्रक्षेपित किया जाता है और . प्रक्षेपण वेक्टर है और त्रुटि समतल के लंबवत है, ताकि . प्रक्षेपण वेक्टर कारक सदिशों के रूप में दर्शाया जा सकता है . प्रक्षेपण वेक्टर की लंबाई का वर्ग समुदाय है: . यदि कोई अन्य डेटा वेक्टर के बीच के कोण की कोज्या को आलेखित किया गया और होगा  : द -सहसंबंध मैट्रिक्स में प्रवेश। (हरमन चित्र 4.3 से अनुकूलित)[3]

कारक विश्लेषण के मापदंडों और चर को ज्यामितीय व्याख्या दी जा सकती है। आंकड़ा (), कारक () और त्रुटियाँ () को वेक्टर के रूप में देखा जा सकता है -आयामी यूक्लिडियन स्पेस (नमूना स्थान), के रूप में दर्शाया गया है , और क्रमश। चूँकि डेटा मानकीकृत है, डेटा वेक्टर इकाई लंबाई के हैं (). कारक सदिश को परिभाषित करते हैं इस स्थान में -आयामी रैखिक उपस्थान (यानी हाइपरप्लेन), जिस पर डेटा वैक्टर को ऑर्थोगोनल रूप से प्रक्षेपित किया जाता है। यह मॉडल समीकरण से निम्नानुसार है

और कारकों और त्रुटियों की स्वतंत्रता: . उपरोक्त उदाहरण में, हाइपरप्लेन केवल दो कारक वैक्टर द्वारा परिभाषित 2-आयामी विमान है। हाइपरप्लेन पर डेटा वैक्टर का प्रक्षेपण इसके द्वारा दिया गया है

और त्रुटियाँ उस अनुमानित बिंदु से डेटा बिंदु तक वेक्टर हैं और हाइपरप्लेन के लंबवत हैं। कारक विश्लेषण का लक्ष्य हाइपरप्लेन ढूंढना है जो कुछ अर्थों में डेटा के लिए सबसे उपयुक्त है, इसलिए इससे कोई फर्क नहीं पड़ता कि इस हाइपरप्लेन को परिभाषित करने वाले कारक वैक्टर को कैसे चुना जाता है, जब तक कि वे स्वतंत्र हैं और हाइपरप्लेन में स्थित हैं। हम उन्हें ऑर्थोगोनल और सामान्य दोनों के रूप में निर्दिष्ट करने के लिए स्वतंत्र हैं () व्यापकता की हानि के बिना। कारकों का उपयुक्त सेट पाए जाने के बाद, उन्हें हाइपरप्लेन के भीतर मनमाने ढंग से घुमाया जा सकता है, ताकि कारक वैक्टर का कोई भी घुमाव उसी हाइपरप्लेन को परिभाषित करेगा, और समाधान भी होगा। परिणामस्वरूप, उपरोक्त उदाहरण में, जिसमें फिटिंग हाइपरप्लेन दो आयामी है, यदि हम पहले से नहीं जानते हैं कि दो प्रकार की बुद्धि असंबंधित हैं, तो हम दो कारकों की दो अलग-अलग प्रकार की बुद्धि के रूप में व्याख्या नहीं कर सकते हैं। भले ही वे असंबंधित हों, हम बिना किसी बाहरी तर्क के यह नहीं बता सकते कि कौन सा कारक मौखिक बुद्धि से मेल खाता है और कौन सा गणितीय बुद्धि से मेल खाता है, या क्या कारक दोनों का रैखिक संयोजन हैं।

डेटा वैक्टर इकाई लंबाई है. डेटा के लिए सहसंबंध मैट्रिक्स की प्रविष्टियाँ दी गई हैं . सहसंबंध मैट्रिक्स को ज्यामितीय रूप से दो डेटा वैक्टर के बीच के कोण के कोसाइन के रूप में व्याख्या किया जा सकता है और . विकर्ण तत्व स्पष्ट रूप से होंगे s और ऑफ विकर्ण तत्वों का निरपेक्ष मान एकता से कम या उसके बराबर होगा। घटे हुए सहसंबंध मैट्रिक्स को इस प्रकार परिभाषित किया गया है

.

कारक विश्लेषण का लक्ष्य फिटिंग हाइपरप्लेन का चयन करना है, ताकि सहसंबंध मैट्रिक्स के विकर्ण तत्वों को छोड़कर, कम सहसंबंध मैट्रिक्स सहसंबंध मैट्रिक्स को यथासंभव पुन: उत्पन्न कर सके, जिन्हें इकाई मान के रूप में जाना जाता है। दूसरे शब्दों में, लक्ष्य डेटा में क्रॉस-सहसंबंधों को यथासंभव सटीक रूप से पुन: पेश करना है। विशेष रूप से, फिटिंग हाइपरप्लेन के लिए, ऑफ-विकर्ण घटकों में माध्य वर्ग त्रुटि

इसे न्यूनतम किया जाना है, और इसे ऑर्थोनॉर्मल फैक्टर वैक्टर के सेट के संबंध में इसे कम करके पूरा किया जाता है। यह देखा जा सकता है

दाईं ओर का शब्द केवल त्रुटियों का सहप्रसरण है। मॉडल में, त्रुटि सहप्रसरण को विकर्ण मैट्रिक्स कहा गया है और इसलिए उपरोक्त न्यूनतमकरण समस्या वास्तव में मॉडल के लिए सबसे उपयुक्त होगी: यह त्रुटि सहप्रसरण का नमूना अनुमान प्राप्त करेगी जिसके ऑफ-विकर्ण घटकों को औसत वर्ग अर्थ में न्यूनतम किया गया है। यह देखा जा सकता है कि जब से डेटा वेक्टर के ऑर्थोगोनल प्रक्षेपण हैं, उनकी लंबाई अनुमानित डेटा वेक्टर की लंबाई से कम या उसके बराबर होगी, जो कि एकता है। इन लंबाइयों का वर्ग कम सहसंबंध मैट्रिक्स के विकर्ण तत्व मात्र हैं। कम सहसंबंध मैट्रिक्स के इन विकर्ण तत्वों को सांप्रदायिकता के रूप में जाना जाता है:

समुदायों के बड़े मूल्य यह संकेत देंगे कि फिटिंग हाइपरप्लेन सहसंबंध मैट्रिक्स को सटीक रूप से पुन: प्रस्तुत कर रहा है। कारकों के माध्य मानों को भी शून्य होने के लिए बाध्य किया जाना चाहिए, जिससे यह निष्कर्ष निकलता है कि त्रुटियों का माध्य मान भी शून्य होगा।

व्यावहारिक कार्यान्वयन

कारक विश्लेषण के प्रकार

खोजपूर्ण कारक विश्लेषण

खोजपूर्ण कारक विश्लेषण (ईएफए) का उपयोग उन वस्तुओं और समूह वस्तुओं के बीच जटिल अंतर्संबंधों की पहचान करने के लिए किया जाता है जो एकीकृत अवधारणाओं का हिस्सा हैं।[4] शोधकर्ता कारकों के बीच संबंधों के बारे में कोई पूर्व धारणा नहीं बनाता है।[4]


पुष्टि कारक विश्लेषण

पुष्टिकरण कारक विश्लेषण (सीएफए) अधिक जटिल दृष्टिकोण है जो इस परिकल्पना का परीक्षण करता है कि आइटम विशिष्ट कारकों से जुड़े हैं।[4]सीएफए माप मॉडल का परीक्षण करने के लिए संरचनात्मक समीकरण मॉडलिंग का उपयोग करता है जिससे कारकों पर लोड करने से देखे गए चर और न देखे गए चर के बीच संबंधों के मूल्यांकन की अनुमति मिलती है।[4] संरचनात्मक समीकरण मॉडलिंग दृष्टिकोण माप त्रुटि को समायोजित कर सकते हैं और न्यूनतम-वर्ग अनुमान की तुलना में कम प्रतिबंधात्मक हैं।[4] परिकल्पित मॉडल का परीक्षण वास्तविक डेटा के विरुद्ध किया जाता है, और विश्लेषण अव्यक्त चर (कारकों) पर देखे गए चर के लोडिंग के साथ-साथ अव्यक्त चर के बीच सहसंबंध को प्रदर्शित करेगा।[4]


कारक निष्कर्षण के प्रकार

प्रमुख घटक विश्लेषण (पीसीए) कारक निष्कर्षण के लिए व्यापक रूप से उपयोग की जाने वाली विधि है, जो ईएफए का पहला चरण है।[4]अधिकतम संभावित विचरण निकालने के लिए कारक भार की गणना की जाती है, क्रमिक फैक्टरिंग तब तक जारी रहती है जब तक कि कोई और सार्थक विचरण नहीं बचा हो।[4]फिर विश्लेषण के लिए कारक मॉडल को घुमाया जाना चाहिए।[4]

कैनोनिकल फैक्टर विश्लेषण, जिसे राव की कैनोनिकल फैक्टरिंग भी कहा जाता है, पीसीए के समान मॉडल की गणना करने की अलग विधि है, जो प्रमुख अक्ष विधि का उपयोग करती है। विहित कारक विश्लेषण उन कारकों की तलाश करता है जिनका प्रेक्षित चर के साथ उच्चतम विहित सहसंबंध होता है। विहित कारक विश्लेषण डेटा के मनमाने पुनर्स्केलिंग से अप्रभावित रहता है।

सामान्य कारक विश्लेषण, जिसे प्रमुख कारक विश्लेषण (पीएफए) या प्रमुख अक्ष फैक्टरिंग (पीएएफ) भी कहा जाता है, सबसे कम कारकों की तलाश करता है जो चर के सेट के सामान्य विचरण (सहसंबंध) के लिए जिम्मेदार हो सकते हैं।

छवि फैक्टरिंग वास्तविक चर के बजाय अनुमानित चर के सहसंबंध मैट्रिक्स पर आधारित है, जहां प्रत्येक चर की भविष्यवाणी कई प्रतिगमन का उपयोग करके दूसरों से की जाती है।

अल्फा फैक्टरिंग कारकों की विश्वसनीयता को अधिकतम करने पर आधारित है, यह मानते हुए कि चर को चर के ब्रह्मांड से यादृच्छिक रूप से नमूना लिया जाता है। अन्य सभी विधियाँ यह मानती हैं कि मामलों को नमूनाकृत किया गया है और चरों को निश्चित किया गया है।

कारक प्रतिगमन मॉडल कारक मॉडल और प्रतिगमन मॉडल का संयोजन मॉडल है; या वैकल्पिक रूप से, इसे हाइब्रिड कारक मॉडल के रूप में देखा जा सकता है,[5] जिनके कारक आंशिक रूप से ज्ञात हैं।

शब्दावली

Factor loadings
Communality is the square of the standardized outer loading of an item. Analogous to Pearson's r-squared, the squared factor loading is the percent of variance in that indicator variable explained by the factor. To get the percent of variance in all the variables accounted for by each factor, add the sum of the squared factor loadings for that factor (column) and divide by the number of variables. (Note the number of variables equals the sum of their variances as the variance of a standardized variable is 1.) This is the same as dividing the factor's eigenvalue by the number of variables.
When interpreting, by one rule of thumb in confirmatory factor analysis, factor loadings should be .7 or higher to confirm that independent variables identified a priori are represented by a particular factor, on the rationale that the .7 level corresponds to about half of the variance in the indicator being explained by the factor. However, the .7 standard is a high one and real-life data may well not meet this criterion, which is why some researchers, particularly for exploratory purposes, will use a lower level such as .4 for the central factor and .25 for other factors. In any event, factor loadings must be interpreted in the light of theory, not by arbitrary cutoff levels.
In oblique rotation, one may examine both a pattern matrix and a structure matrix. The structure matrix is simply the factor loading matrix as in orthogonal rotation, representing the variance in a measured variable explained by a factor on both a unique and common contributions basis. The pattern matrix, in contrast, contains coefficients which just represent unique contributions. The more factors, the lower the pattern coefficients as a rule since there will be more common contributions to variance explained. For oblique rotation, the researcher looks at both the structure and pattern coefficients when attributing a label to a factor. Principles of oblique rotation can be derived from both cross entropy and its dual entropy.[6]
Communality
The sum of the squared factor loadings for all factors for a given variable (row) is the variance in that variable accounted for by all the factors. The communality measures the percent of variance in a given variable explained by all the factors jointly and may be interpreted as the reliability of the indicator in the context of the factors being posited.
Spurious solutions
If the communality exceeds 1.0, there is a spurious solution, which may reflect too small a sample or the choice to extract too many or too few factors.
Uniqueness of a variable
The variability of a variable minus its communality.
Eigenvalues/characteristic roots
Eigenvalues measure the amount of variation in the total sample accounted for by each factor. The ratio of eigenvalues is the ratio of explanatory importance of the factors with respect to the variables. If a factor has a low eigenvalue, then it is contributing little to the explanation of variances in the variables and may be ignored as less important than the factors with higher eigenvalues.
Extraction sums of squared loadings
Initial eigenvalues and eigenvalues after extraction (listed by SPSS as "Extraction Sums of Squared Loadings") are the same for PCA extraction, but for other extraction methods, eigenvalues after extraction will be lower than their initial counterparts. SPSS also prints "Rotation Sums of Squared Loadings" and even for PCA, these eigenvalues will differ from initial and extraction eigenvalues, though their total will be the same.
Factor scores
Component scores (in PCA)
Template:Ghat The scores of each case (row) on each factor (column). To compute the factor score for a given case for a given factor, one takes the case's standardized score on each variable, multiplies by the corresponding loadings of the variable for the given factor, and sums these products. Computing factor scores allows one to look for factor outliers. Also, factor scores may be used as variables in subsequent modeling.

कारकों की संख्या निर्धारित करने के लिए मानदंड

शोधकर्ता कारक प्रतिधारण के लिए ऐसे व्यक्तिपरक या मनमाने मानदंडों से बचना चाहते हैं क्योंकि यह मेरे लिए समझ में आता है। इस समस्या को हल करने के लिए कई वस्तुनिष्ठ तरीके विकसित किए गए हैं, जो उपयोगकर्ताओं को जांच के लिए समाधानों की उचित श्रृंखला निर्धारित करने की अनुमति देते हैं।[7] हालाँकि ये अलग-अलग विधियाँ अक्सर एक-दूसरे से असहमत होती हैं कि कितने कारकों को बरकरार रखा जाना चाहिए। उदाहरण के लिए, समानांतर विश्लेषण 5 कारकों का सुझाव दे सकता है जबकि वेलिसर का एमएपी 6 का सुझाव देता है, इसलिए शोधकर्ता 5 और 6-कारक समाधान दोनों का अनुरोध कर सकता है और बाहरी डेटा और सिद्धांत के संबंध में प्रत्येक पर चर्चा कर सकता है।

आधुनिक मानदंड

हॉर्न का समानांतर विश्लेषण (पीए):[8] मोंटे-कार्लो आधारित सिमुलेशन विधि जो देखे गए स्वदेशी मूल्यों की तुलना असंबद्ध सामान्य चर से प्राप्त मूल्यों से करती है। कारक या घटक को बरकरार रखा जाता है यदि संबंधित आइगेनवैल्यू यादृच्छिक डेटा से प्राप्त आइजेनवैल्यू के वितरण के 95वें प्रतिशतक से बड़ा है। बनाए रखने के लिए घटकों की संख्या निर्धारित करने के लिए पीए अधिक सामान्यतः अनुशंसित नियमों में से है,[7][9] लेकिन कई प्रोग्राम इस विकल्प को शामिल करने में विफल रहते हैं (एक उल्लेखनीय अपवाद आर (प्रोग्रामिंग भाषा) है)।[10] हालाँकि, एंटोन फॉर्मैन ने सैद्धांतिक और अनुभवजन्य दोनों साक्ष्य प्रदान किए कि इसका अनुप्रयोग कई मामलों में उचित नहीं हो सकता है क्योंकि इसका प्रदर्शन नमूना आकार, आइटम प्रतिक्रिया सिद्धांत # आइटम प्रतिक्रिया फ़ंक्शन और सहसंबंध गुणांक के प्रकार से काफी प्रभावित होता है।[11] वेलिसर (1976) एमएपी परीक्षण[12] जैसा कि कर्टनी द्वारा वर्णित है (2013)[13] "इसमें पूर्ण प्रमुख घटक विश्लेषण शामिल है जिसके बाद आंशिक सहसंबंधों के मैट्रिक्स की श्रृंखला की जांच की जाती है" (पृष्ठ 397 (हालांकि ध्यान दें कि यह उद्धरण वेलिसर (1976) में नहीं होता है और उद्धृत पृष्ठ संख्या उद्धरण के पृष्ठों के बाहर है)। चरण "0" के लिए वर्ग सहसंबंध (चित्र 4 देखें) अपूर्ण सहसंबंध मैट्रिक्स के लिए औसत वर्ग-विकर्ण सहसंबंध है। चरण 1 पर, पहले प्रमुख घटक और उससे संबंधित वस्तुओं को आंशिक रूप से हटा दिया जाता है। इसके बाद, बाद के सहसंबंध मैट्रिक्स के लिए औसत वर्ग-विकर्ण सहसंबंध की गणना चरण 1 के लिए की जाती है। चरण 2 पर, पहले दो प्रमुख घटकों को आंशिक रूप से हटा दिया जाता है और परिणामी औसत वर्ग-विकर्ण सहसंबंध की फिर से गणना की जाती है। गणना k शून्य से चरण के लिए की जाती है (k मैट्रिक्स में चर की कुल संख्या का प्रतिनिधित्व करता है)। इसके बाद, प्रत्येक चरण के लिए सभी औसत वर्ग सहसंबंधों को पंक्तिबद्ध किया जाता है और विश्लेषण में चरण संख्या जिसके परिणामस्वरूप सबसे कम औसत वर्ग आंशिक सहसंबंध होता है, घटकों की संख्या निर्धारित करता है या बनाए रखने के लिए कारक।[12]इस विधि द्वारा, घटकों को तब तक बनाए रखा जाता है जब तक सहसंबंध मैट्रिक्स में भिन्नता अवशिष्ट या त्रुटि भिन्नता के विपरीत व्यवस्थित भिन्नता का प्रतिनिधित्व करती है। यद्यपि पद्धतिगत रूप से प्रमुख घटक विश्लेषण के समान, एमएपी तकनीक को कई सिमुलेशन अध्ययनों में बनाए रखने के लिए कारकों की संख्या निर्धारित करने में काफी अच्छा प्रदर्शन करते दिखाया गया है।[7][14][15][16] यह प्रक्रिया SPSS के उपयोगकर्ता इंटरफ़ेस के माध्यम से उपलब्ध कराई गई है,[13]साथ ही आर (प्रोग्रामिंग भाषा) के लिए मनोवैज्ञानिक पैकेज।[17][18]


पुराने तरीके

कैसर मानदंड: कैसर नियम 1.0 के तहत eigenvalues ​​​​के साथ सभी घटकों को छोड़ने के लिए है - यह औसत एकल आइटम द्वारा दर्ज की गई जानकारी के बराबर eigenvalue है।[19] एसपीएसएस और अधिकांश सांख्यिकीय सॉफ़्टवेयर में कैसर मानदंड डिफ़ॉल्ट है, लेकिन कारकों की संख्या का अनुमान लगाने के लिए एकमात्र कट-ऑफ मानदंड के रूप में उपयोग किए जाने पर इसकी अनुशंसा नहीं की जाती है क्योंकि यह कारकों को अधिक निकालने की प्रवृत्ति रखता है।[20] इस पद्धति का रूपांतर तैयार किया गया है जहां शोधकर्ता प्रत्येक आइगेनवैल्यू के लिए आत्मविश्वास अंतराल की गणना करता है और केवल उन कारकों को बरकरार रखता है जिनका संपूर्ण आत्मविश्वास अंतराल 1.0 से अधिक है।[14][21] मिट्टी - रोढ़ी वाला भूखंड:[22] कैटेल स्क्री परीक्षण घटकों को एक्स-अक्ष के रूप में और संबंधित eigenvalue को वाई-अक्ष के रूप में प्लॉट करता है। जैसे-जैसे कोई दाईं ओर बढ़ता है, बाद के घटकों की ओर, स्वदेशी मूल्य कम हो जाते हैं। जब गिरावट बंद हो जाती है और वक्र कम तेज गिरावट की ओर कोहनी बनाता है, तो कैटेल का स्क्री परीक्षण कोहनी से शुरू होने वाले सभी घटकों को छोड़ने के लिए कहता है। शोधकर्ता-नियंत्रित विक्षनरी:फज फ़ैक्टर के प्रति उत्तरदायी होने के कारण कभी-कभी इस नियम की आलोचना की जाती है। यानी, चूंकि कोहनी चुनना व्यक्तिपरक हो सकता है क्योंकि वक्र में कई कोहनी होती हैं या चिकनी वक्र होती है, शोधकर्ता को अपने शोध एजेंडे द्वारा वांछित कारकों की संख्या पर कट-ऑफ निर्धारित करने का प्रलोभन दिया जा सकता है।

वेरिएंस ने मानदंड समझाया: कुछ शोधकर्ता भिन्नता के 90% (कभी-कभी 80%) को ध्यान में रखने के लिए पर्याप्त कारकों को रखने के नियम का उपयोग करते हैं। जहां शोधकर्ता का लक्ष्य ओकाम के रेजर पर जोर देता है (यथासंभव कुछ कारकों के साथ भिन्नता की व्याख्या करना), मानदंड 50% तक कम हो सकता है।

बायेसियन विधि

भारतीय बुफ़े प्रक्रिया पर आधारित बायेसियन दृष्टिकोण अव्यक्त कारकों की प्रशंसनीय संख्या पर संभाव्यता वितरण देता है।[23]


रोटेशन विधियाँ

अनरोटेटेड आउटपुट पहले कारक, फिर दूसरे फैक्टर आदि के कारण होने वाले विचरण को अधिकतम करता है। अनरोटेटेड समाधान ओर्थोगोनल है। इसका मतलब है कि कारकों के बीच सहसंबंध शून्य है। अनरोटेटेड समाधान का उपयोग करने का नुकसान यह है कि आमतौर पर अधिकांश आइटम शुरुआती कारकों पर लोड होते हैं और कई आइटम से अधिक कारकों पर काफी हद तक लोड होते हैं।

रोटेशन, लोडिंग का पैटर्न बनाने के लिए समन्वय प्रणाली के अक्षों को रोटेशन (गणित) द्वारा व्याख्या करना आसान बनाता है, जहां प्रत्येक आइटम केवल कारक पर दृढ़ता से लोड होता है और अन्य कारकों पर अधिक कमजोर रूप से लोड होता है। घुमाव ऑर्थोगोनल या तिरछा हो सकता है। तिरछा घुमाव कारकों को सहसंबंधित करने की अनुमति देता है।[24] वेरिमैक्स रोटेशन सबसे अधिक इस्तेमाल की जाने वाली रोटेशन विधि है। वेरिमैक्स कारक अक्षों का ऑर्थोगोनल रोटेशन है जो कारक लोडिंग मैट्रिक्स में सभी चर (पंक्तियों) पर कारक (स्तंभ) के वर्ग लोडिंग के विचरण को अधिकतम करता है। प्रत्येक कारक में कारक द्वारा बड़े लोडिंग के साथ केवल कुछ चर होते हैं। वेरिमैक्स लोडिंग मैट्रिक्स के कॉलम को सरल बनाता है। इससे प्रत्येक चर को ही कारक से पहचानना यथासंभव आसान हो जाता है।

क्वार्टिमैक्स रोटेशन ऑर्थोगोनल रोटेशन है जो चर को समझाने के लिए आवश्यक कारकों की संख्या को कम करता है। यह कॉलम के बजाय लोडिंग मैट्रिक्स की पंक्तियों को सरल बनाता है। क्वार्टिमैक्स अक्सर सामान्य कारक उत्पन्न करता है जिसमें कई चर के लिए लोडिंग होती है। यह अघुलनशील समाधान के करीब है। यदि कई चर सहसंबद्ध हैं तो क्वार्टिमैक्स उपयोगी है ताकि प्रमुख कारक की उम्मीद की जा सके।[25] इक्विमैक्स रोटेशन वेरिमैक्स और क्वार्टिमैक्स के बीच समझौता है।

कई व्यावहारिक अनुप्रयोगों में, यह मान लेना अवास्तविक है कि कारक असंबंधित हैं। इस स्थिति में तिरछे घुमाव को प्राथमिकता दी जाती है। एक-दूसरे से सहसंबद्ध कारकों को अनुमति देना विशेष रूप से साइकोमेट्रिक अनुसंधान में लागू होता है, क्योंकि दृष्टिकोण, राय और बौद्धिक क्षमताएं सहसंबद्ध होती हैं और अन्यथा मान लेना अवास्तविक होगा।[26] जब कोई व्यक्ति तिरछा (गैर-ऑर्थोगोनल) समाधान चाहता है तो ओब्लिमिन रोटेशन मानक विधि है।

प्रोमैक्स रोटेशन वैकल्पिक तिरछा रोटेशन विधि है जो ओब्लिमिन विधि की तुलना में कम्प्यूटेशनल रूप से तेज़ है और इसलिए कभी-कभी बहुत बड़े डाटासेट के लिए उपयोग किया जाता है।

कारक घूर्णन के साथ समस्याएँ

जब प्रत्येक चर कई कारकों पर लोड हो रहा हो तो कारक संरचना की व्याख्या करना मुश्किल हो सकता है। डेटा में छोटे परिवर्तन कभी-कभी कारक रोटेशन मानदंड में संतुलन बना सकते हैं ताकि पूरी तरह से अलग कारक रोटेशन उत्पन्न हो। इससे विभिन्न प्रयोगों के परिणामों की तुलना करना कठिन हो सकता है। इस समस्या को विश्वव्यापी सांस्कृतिक भिन्नताओं के विभिन्न अध्ययनों की तुलना से स्पष्ट किया गया है। प्रत्येक अध्ययन ने सांस्कृतिक चर के विभिन्न मापों का उपयोग किया है और अलग-अलग घुमाए गए कारक विश्लेषण परिणाम का उत्पादन किया है। प्रत्येक अध्ययन के लेखकों का मानना ​​था कि उन्होंने कुछ नया खोजा है, और उन्होंने जो कारक पाए उनके लिए नए नाम ईजाद किए। अध्ययनों की बाद की तुलना में पाया गया कि जब अनियंत्रित परिणामों की तुलना की गई तो परिणाम समान थे। कारक रोटेशन के सामान्य अभ्यास ने विभिन्न अध्ययनों के परिणामों के बीच समानता को अस्पष्ट कर दिया है।[27]


उच्च क्रम कारक विश्लेषण

उच्च-क्रम कारक विश्लेषण सांख्यिकीय पद्धति है जिसमें दोहराए जाने वाले चरण कारक विश्लेषण - तिरछा रोटेशन - घुमाए गए कारकों का कारक विश्लेषण शामिल है। इसकी योग्यता शोधकर्ता को अध्ययन की गई घटनाओं की पदानुक्रमित संरचना को देखने में सक्षम बनाना है। परिणामों की व्याख्या करने के लिए, कोई या तो मैट्रिक्स गुणन द्वारा आगे बढ़ता है | प्राथमिक कारक पैटर्न मैट्रिक्स को उच्च-क्रम कारक पैटर्न मैट्रिक्स (गोर्सच, 1983) द्वारा गुणा करने और शायद परिणाम के लिए वेरिमैक्स रोटेशन लागू करने (थॉम्पसन, 1990) या श्मिड-लीमन समाधान (एसएलएस, श्मिड और लीमन, 1957, जिसे श्मिड-लीमन परिवर्तन के रूप में भी जाना जाता है) का उपयोग करके आगे बढ़ता है जो सांख्यिकीय फैलाव का गुण बताता है। प्राथमिक कारकों से दूसरे क्रम के कारकों तक।

खोजपूर्ण कारक विश्लेषण (ईएफए) बनाम प्रमुख घटक विश्लेषण (पीसीए)

कारक विश्लेषण प्रमुख घटक विश्लेषण (पीसीए) से संबंधित है, लेकिन दोनों समान नहीं हैं।[28] दोनों तकनीकों के बीच अंतर को लेकर क्षेत्र में महत्वपूर्ण विवाद रहा है। पीसीए को खोजपूर्ण कारक विश्लेषण (ईएफए) का अधिक बुनियादी संस्करण माना जा सकता है जिसे हाई-स्पीड कंप्यूटर के आगमन से पहले शुरुआती दिनों में विकसित किया गया था। पीसीए और कारक विश्लेषण दोनों का लक्ष्य डेटा के सेट की आयामीता को कम करना है, लेकिन ऐसा करने के लिए अपनाए गए दृष्टिकोण दोनों तकनीकों के लिए अलग-अलग हैं। कारक विश्लेषण स्पष्ट रूप से देखे गए चर से कुछ अप्राप्य कारकों की पहचान करने के उद्देश्य से डिज़ाइन किया गया है, जबकि पीसीए सीधे इस उद्देश्य को संबोधित नहीं करता है; सर्वोत्तम रूप से, पीसीए आवश्यक कारकों का अनुमान प्रदान करता है।[29] खोजपूर्ण विश्लेषण के दृष्टिकोण से, पीसीए के eigenvalues फुलाए गए घटक लोडिंग हैं, यानी, त्रुटि भिन्नता से दूषित हैं।[30][31][32][33][34][35] जबकि खोजपूर्ण कारक विश्लेषण और प्रमुख घटक विश्लेषण को सांख्यिकी के कुछ क्षेत्रों में पर्यायवाची तकनीकों के रूप में माना जाता है, इसकी आलोचना की गई है।[36][37] कारक विश्लेषण अंतर्निहित कारण संरचना की धारणा से संबंधित है: [यह] मानता है कि देखे गए चर में सहसंयोजन या अधिक अव्यक्त चर (कारकों) की उपस्थिति के कारण होता है जो इन देखे गए चर पर कारण प्रभाव डालते हैं।[38] इसके विपरीत, पीसीए ऐसे अंतर्निहित कारण संबंध को न तो मानता है और न ही उस पर निर्भर करता है। शोधकर्ताओं ने तर्क दिया है कि दो तकनीकों के बीच अंतर का मतलब यह हो सकता है कि विश्लेषणात्मक लक्ष्य के आधार पर को दूसरे पर प्राथमिकता देने के उद्देश्यपूर्ण लाभ हैं। यदि कारक मॉडल गलत तरीके से तैयार किया गया है या मान्यताओं को पूरा नहीं किया गया है, तो कारक विश्लेषण गलत परिणाम देगा। कारक विश्लेषण का सफलतापूर्वक उपयोग किया गया है जहां सिस्टम की पर्याप्त समझ अच्छे प्रारंभिक मॉडल फॉर्मूलेशन की अनुमति देती है। पीसीए मूल डेटा में गणितीय परिवर्तन को नियोजित करता है, जिसमें सहप्रसरण मैट्रिक्स के रूप के बारे में कोई धारणा नहीं होती है। पीसीए का उद्देश्य मूल चर के रैखिक संयोजनों को निर्धारित करना और कुछ का चयन करना है जिनका उपयोग अधिक जानकारी खोए बिना डेटा सेट को सारांशित करने के लिए किया जा सकता है।[39]


पीसीए और ईएफए के विपरीत तर्क

फैब्रिगर एट अल. (1999)[36]ऐसे कई कारणों का पता लगाएं जिनका उपयोग यह सुझाव देने के लिए किया जाता है कि पीसीए कारक विश्लेषण के बराबर नहीं है:

  1. कभी-कभी यह सुझाव दिया जाता है कि पीसीए कम्प्यूटेशनल रूप से तेज़ है और कारक विश्लेषण की तुलना में कम संसाधनों की आवश्यकता होती है। फैब्रिगर एट अल. सुझाव है कि आसानी से उपलब्ध कंप्यूटर संसाधनों ने इस व्यावहारिक चिंता को अप्रासंगिक बना दिया है।
  2. पीसीए और कारक विश्लेषण समान परिणाम उत्पन्न कर सकते हैं। इस बिंदु को फैब्रिगर एट अल द्वारा भी संबोधित किया गया है; कुछ मामलों में, जहाँ सामुदायिकताएँ कम हैं (जैसे 0.4), दोनों तकनीकें अलग-अलग परिणाम उत्पन्न करती हैं। वास्तव में, फैब्रिगर एट अल। तर्क है कि ऐसे मामलों में जहां डेटा सामान्य कारक मॉडल की मान्यताओं के अनुरूप है, पीसीए के परिणाम गलत परिणाम हैं।
  3. ऐसे कुछ मामले हैं जहां कारक विश्लेषण से 'हेवुड मामले' सामने आते हैं। इनमें वे स्थितियाँ शामिल हैं जिनमें मापे गए चर में 100% या अधिक भिन्नता का अनुमान मॉडल द्वारा लगाया जाता है। फैब्रिगर एट अल. सुझाव दें कि ये मामले वास्तव में शोधकर्ता के लिए जानकारीपूर्ण हैं, जो गलत तरीके से निर्दिष्ट मॉडल या सामान्य कारक मॉडल के उल्लंघन का संकेत देते हैं। पीसीए दृष्टिकोण में हेवुड मामलों की कमी का मतलब यह हो सकता है कि ऐसे मुद्दों पर ध्यान नहीं दिया जाता है।
  4. शोधकर्ता पीसीए दृष्टिकोण से अतिरिक्त जानकारी प्राप्त करते हैं, जैसे किसी निश्चित घटक पर किसी व्यक्ति का स्कोर; ऐसी जानकारी कारक विश्लेषण से नहीं मिलती है। हालाँकि, फैब्रिगर एट अल के रूप में। तर्क दें, कारक विश्लेषण का विशिष्ट उद्देश्य - यानी मापे गए चर के बीच सहसंबंध और निर्भरता की संरचना के लिए लेखांकन कारकों को निर्धारित करना - कारक स्कोर के ज्ञान की आवश्यकता नहीं है और इस प्रकार यह लाभ अस्वीकार कर दिया गया है। कारक विश्लेषण से कारक स्कोर की गणना करना भी संभव है।

प्रसरण बनाम सहप्रसरण

कारक विश्लेषण माप में निहित यादृच्छिक त्रुटि को ध्यान में रखता है, जबकि पीसीए ऐसा करने में विफल रहता है। इस बिंदु का उदाहरण ब्राउन (2009) द्वारा दिया गया है,[40] किसने संकेत दिया कि, गणना में शामिल सहसंबंध मैट्रिक्स के संबंध में:

"In PCA, 1.00s are put in the diagonal meaning that all of the variance in the matrix is to be accounted for (including variance unique to each variable, variance common among variables, and error variance). That would, therefore, by definition, include all of the variance in the variables. In contrast, in EFA, the communalities are put in the diagonal meaning that only the variance shared with other variables is to be accounted for (excluding variance unique to each variable and error variance). That would, therefore, by definition, include only variance that is common among the variables."

— Brown (2009), Principal components analysis and exploratory factor analysis – Definitions, differences and choices

इस कारण से, ब्राउन (2009) कारक विश्लेषण का उपयोग करने की सलाह देते हैं जब चर के बीच संबंधों के बारे में सैद्धांतिक विचार मौजूद होते हैं, जबकि पीसीए का उपयोग किया जाना चाहिए यदि शोधकर्ता का लक्ष्य अपने डेटा में पैटर्न का पता लगाना है।

प्रक्रिया और परिणाम में अंतर

पीसीए और कारक विश्लेषण (एफए) के बीच अंतर को सुहर (2009) द्वारा और अधिक स्पष्ट किया गया है:[37]* पीसीए के परिणामस्वरूप प्रमुख घटक बनते हैं जो प्रेक्षित चरों के लिए अधिकतम मात्रा में विचरण का कारण बनते हैं; एफए डेटा में सामान्य भिन्नता का हिसाब रखता है।

  • पीसीए सहसंबंध मैट्रिक्स के विकर्णों पर सम्मिलित करता है; एफए अद्वितीय कारकों के साथ सहसंबंध मैट्रिक्स के विकर्णों को समायोजित करता है।
  • पीसीए घटक अक्ष पर वर्गाकार लंबवत दूरी के योग को कम करता है; एफए उन कारकों का अनुमान लगाता है जो देखे गए चर पर प्रतिक्रियाओं को प्रभावित करते हैं।
  • पीसीए में घटक स्कोर आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स द्वारा भारित देखे गए चर के रैखिक संयोजन का प्रतिनिधित्व करते हैं; एफए में देखे गए चर अंतर्निहित और अद्वितीय कारकों के रैखिक संयोजन हैं।
  • पीसीए में, प्राप्त घटक व्याख्या योग्य नहीं हैं, यानी वे अंतर्निहित 'निर्माण' का प्रतिनिधित्व नहीं करते हैं; एफए में, सटीक मॉडल विनिर्देश दिए जाने पर, अंतर्निहित निर्माणों को लेबल किया जा सकता है और आसानी से व्याख्या की जा सकती है।

साइकोमेट्रिक्स में

इतिहास

चार्ल्स स्पीयरमैन सामान्य कारक विश्लेषण पर चर्चा करने वाले पहले मनोवैज्ञानिक थे[41] और अपने 1904 के पेपर में ऐसा किया।[42] इसने उनके तरीकों के बारे में कुछ विवरण प्रदान किए और एकल-कारक मॉडल से संबंधित था।[43] उन्होंने पाया कि विभिन्न प्रकार के असंबंधित विषयों पर स्कूली बच्चों के स्कोर सकारात्मक रूप से सहसंबद्ध थे, जिससे उन्हें यह मानने में मदद मिली कि सामान्य मानसिक क्षमता, या जी कारक (साइकोमेट्रिक्स), मानव संज्ञानात्मक प्रदर्शन को रेखांकित और आकार देता है।

कई कारकों के साथ सामान्य कारक विश्लेषण का प्रारंभिक विकास 1930 के दशक की शुरुआत में लुई लियोन थर्स्टन द्वारा दो पत्रों में दिया गया था,[44][45] उनकी 1935 की पुस्तक, मन के सदिश में इसका सारांश दिया गया है।[46] थर्स्टन ने सामुदायिकता, विशिष्टता और रोटेशन सहित कई महत्वपूर्ण कारक विश्लेषण अवधारणाएँ पेश कीं।[47] उन्होंने सरल संरचना की वकालत की, और रोटेशन के तरीकों का विकास किया जिसका उपयोग ऐसी संरचना को प्राप्त करने के तरीके के रूप में किया जा सकता है।[41]

क्यू पद्धति में, स्पीयरमैन के छात्र, विलियम स्टीफेंसन (मनोवैज्ञानिक), अंतर-व्यक्तिगत मतभेदों के अध्ययन की ओर उन्मुख आर कारक विश्लेषण और व्यक्तिपरक अंतर-व्यक्तिगत मतभेदों की ओर उन्मुख क्यू कारक विश्लेषण के बीच अंतर करते हैं।[48][49] रेमंड कैटेल कारक विश्लेषण और साइकोमेट्रिक्स के प्रबल समर्थक थे और उन्होंने बुद्धि को समझाने के लिए थर्स्टन के बहु-कारक सिद्धांत का इस्तेमाल किया। कैटेल ने स्क्री प्लॉट और समानता गुणांक भी विकसित किया।

मनोविज्ञान में अनुप्रयोग

कारक विश्लेषण का उपयोग उन कारकों की पहचान करने के लिए किया जाता है जो विभिन्न परीक्षणों पर विभिन्न प्रकार के परिणामों की व्याख्या करते हैं। उदाहरण के लिए, खुफिया शोध में पाया गया कि जो लोग मौखिक क्षमता के परीक्षण में उच्च अंक प्राप्त करते हैं वे अन्य परीक्षणों में भी अच्छे होते हैं जिनके लिए मौखिक क्षमताओं की आवश्यकता होती है। शोधकर्ताओं ने कारक को अलग करने के लिए कारक विश्लेषण का उपयोग करके इसे समझाया, जिसे अक्सर मौखिक बुद्धिमत्ता कहा जाता है, जो उस डिग्री का प्रतिनिधित्व करता है जिस तक कोई व्यक्ति मौखिक कौशल से जुड़ी समस्याओं को हल करने में सक्षम है।

मनोविज्ञान में कारक विश्लेषण अक्सर खुफिया अनुसंधान से जुड़ा होता है। हालाँकि, इसका उपयोग व्यक्तित्व, दृष्टिकोण, विश्वास आदि जैसे डोमेन की विस्तृत श्रृंखला में कारकों को खोजने के लिए भी किया गया है। यह साइकोमेट्रिक्स से जुड़ा हुआ है, क्योंकि यह किसी उपकरण की वैधता का आकलन यह पता लगाकर कर सकता है कि क्या उपकरण वास्तव में अनुमानित कारकों को मापता है।

फायदे

  • दो या दो से अधिक चरों को ही कारक में संयोजित करके चरों की संख्या में कमी करना। उदाहरण के लिए, दौड़ने, गेंद फेंकने, बल्लेबाजी, कूदने और वजन उठाने में प्रदर्शन को सामान्य एथलेटिक क्षमता जैसे कारक में जोड़ा जा सकता है। आमतौर पर, किसी आइटम द्वारा लोगों के मैट्रिक्स में, संबंधित आइटमों को समूहीकृत करके कारकों का चयन किया जाता है। क्यू कारक विश्लेषण तकनीक में, मैट्रिक्स को स्थानांतरित किया जाता है और संबंधित लोगों को समूहीकृत करके कारक बनाए जाते हैं। उदाहरण के लिए, उदारवादी, स्वतंत्रतावादी, रूढ़िवादी और समाजवादी अलग-अलग समूहों में बन सकते हैं।
  • अंतर-संबंधित चरों के समूहों की पहचान करना, यह देखना कि वे एक-दूसरे से कैसे संबंधित हैं। उदाहरण के लिए, कैरोल ने अपने थ्री स्ट्रेटम थ्योरी के निर्माण के लिए कारक विश्लेषण का उपयोग किया। उन्होंने पाया कि व्यापक दृश्य धारणा नामक कारक इस बात से संबंधित है कि कोई व्यक्ति दृश्य कार्यों में कितना अच्छा है। उन्होंने श्रवण कार्य क्षमता से संबंधित व्यापक श्रवण धारणा कारक भी पाया। इसके अलावा, उन्होंने वैश्विक कारक पाया, जिसे जी या सामान्य बुद्धि कहा जाता है, जो व्यापक दृश्य धारणा और व्यापक श्रवण धारणा दोनों से संबंधित है। इसका मतलब यह है कि उच्च जी वाले व्यक्ति में उच्च दृश्य धारणा क्षमता और उच्च श्रवण धारणा क्षमता दोनों होने की संभावना है, और यह जी इस बात का अच्छा हिस्सा बताता है कि कोई व्यक्ति उन दोनों डोमेन में अच्छा या बुरा क्यों है।

नुकसान

  • ...प्रत्येक अभिविन्यास गणितीय रूप से समान रूप से स्वीकार्य है। लेकिन अलग-अलग फैक्टोरियल सिद्धांत किसी दिए गए समाधान के लिए फैक्टोरियल अक्षों के झुकाव के संदर्भ में उतने ही भिन्न साबित हुए जितने कि किसी अन्य चीज़ के संदर्भ में, इसलिए मॉडल फिटिंग सिद्धांतों के बीच अंतर करने में उपयोगी साबित नहीं हुई। (स्टर्नबर्ग, 1977[50]). इसका मतलब है कि सभी घुमाव अलग-अलग अंतर्निहित प्रक्रियाओं का प्रतिनिधित्व करते हैं, लेकिन सभी घुमाव मानक कारक विश्लेषण अनुकूलन के समान रूप से मान्य परिणाम हैं। इसलिए, अकेले कारक विश्लेषण का उपयोग करके उचित रोटेशन चुनना असंभव है।
  • कारक विश्लेषण केवल उतना ही अच्छा हो सकता है जितना डेटा अनुमति देता है। मनोविज्ञान में, जहां शोधकर्ताओं को अक्सर स्व-रिपोर्ट जैसे कम वैध और विश्वसनीय उपायों पर निर्भर रहना पड़ता है, यह समस्याग्रस्त हो सकता है।
  • कारक विश्लेषण की व्याख्या अनुमान का उपयोग करने पर आधारित है, जो ऐसा समाधान है जो सुविधाजनक है भले ही पूरी तरह सच न हो।[51] ही तरह से तथ्यांकित किए गए ही डेटा की से अधिक व्याख्याएं की जा सकती हैं, और कारक विश्लेषण कार्य-कारण की पहचान नहीं कर सकता है।

पार-सांस्कृतिक अनुसंधान में

अंतर-सांस्कृतिक अनुसंधान में कारक विश्लेषण अक्सर उपयोग की जाने वाली तकनीक है। यह हॉफस्टेड के सांस्कृतिक आयाम सिद्धांत को निकालने के उद्देश्य को पूरा करता है। सबसे प्रसिद्ध सांस्कृतिक आयाम मॉडल गीर्ट हॉफस्टेड, रोनाल्ड इंगलहार्ट, क्रिश्चियन वेलज़ेल, शालोम एच. श्वार्ट्ज और माइकल मिनकोव द्वारा विस्तृत हैं। लोकप्रिय दृश्य विश्व का इंगलहार्ट-वेल्ज़ेल सांस्कृतिक मानचित्र है|इंगलहार्ट और वेल्ज़ेल का विश्व का सांस्कृतिक मानचित्र।[27]


राजनीति विज्ञान में

1965 के शुरुआती अध्ययन में, संबंधित सैद्धांतिक मॉडल और अनुसंधान के निर्माण, राजनीतिक प्रणालियों की तुलना करने और टाइपोलॉजिकल श्रेणियां बनाने के लिए कारक विश्लेषण के माध्यम से दुनिया भर की राजनीतिक प्रणालियों की जांच की जाती है।[52] इन उद्देश्यों के लिए, इस अध्ययन में सात बुनियादी राजनीतिक आयामों की पहचान की गई है, जो विभिन्न प्रकार के राजनीतिक व्यवहार से संबंधित हैं: ये आयाम हैं पहुंच, भेदभाव, आम सहमति, अनुभागवाद, वैधीकरण, रुचि और नेतृत्व सिद्धांत और अनुसंधान।

अन्य राजनीतिक वैज्ञानिक 1988 के राष्ट्रीय चुनाव अध्ययन में जोड़े गए चार नए प्रश्नों का उपयोग करके आंतरिक राजनीतिक प्रभावकारिता के माप का पता लगाते हैं। यहां कारक विश्लेषण का उपयोग यह पता लगाने के लिए किया जाता है कि ये आइटम बाहरी प्रभावकारिता और राजनीतिक विश्वास से अलग एकल अवधारणा को मापते हैं, और ये चार प्रश्न उस समय तक आंतरिक राजनीतिक प्रभावकारिता का सबसे अच्छा उपाय प्रदान करते हैं।[53] संयुक्त राज्य अमेरिका के राष्ट्रपति पद की बहस, रैलियों और हिलेरी क्लिंटन ईमेल विवाद जैसे महत्वपूर्ण अभियान कार्यक्रमों के प्रभाव का अध्ययन करने के लिए| हिलेरी क्लिंटन के ईमेल विवाद, कारक विश्लेषण का उपयोग 2016 में डोनाल्ड ट्रम्प और 2012 में ओबामा जैसे अमेरिकी राष्ट्रपति पद के उम्मीदवारों के लिए लोकप्रियता के उपाय बनाने के लिए किया जाता है। लोकप्रियता कारकों को ट्विटर, फेसबुक, यूट्यूब, इंस्टाग्राम, पाँच अड़तीस और भविष्यवाणी बाजारों से एकत्र किए गए डेटा से संश्लेषित किया जाता है।[54]


विपणन में

बुनियादी कदम हैं:

सूचना संग्रह

डेटा संग्रह चरण आमतौर पर विपणन अनुसंधान पेशेवरों द्वारा किया जाता है। सर्वेक्षण प्रश्न उत्तरदाता से किसी उत्पाद के नमूने या उत्पाद अवधारणाओं के विवरण को विभिन्न विशेषताओं के आधार पर रेटिंग देने के लिए कहते हैं। कहीं भी पाँच से बीस विशेषताएँ चुनी जाती हैं। उनमें ये चीजें शामिल हो सकती हैं: उपयोग में आसानी, वजन, सटीकता, स्थायित्व, रंगीनता, कीमत या आकार। चुनी गई विशेषताएँ अध्ययन किए जा रहे उत्पाद के आधार पर अलग-अलग होंगी। अध्ययन में सभी उत्पादों के बारे में ही प्रश्न पूछा गया है। कई उत्पादों के डेटा को कोडित किया जाता है और आर (प्रोग्रामिंग भाषा), एसपीएसएस, एसएएस प्रणाली, स्टेटा, आंकड़े, जेएमपी और सिस्टैट जैसे सांख्यिकीय कार्यक्रम में इनपुट किया जाता है।

विश्लेषण

विश्लेषण उन अंतर्निहित कारकों को अलग करेगा जो एसोसिएशन के मैट्रिक्स का उपयोग करके डेटा की व्याख्या करते हैं।[55] कारक विश्लेषण अन्योन्याश्रय तकनीक है। अन्योन्याश्रित संबंधों के संपूर्ण सेट की जांच की जाती है। आश्रित चर, स्वतंत्र चर, या कार्य-कारण का कोई विनिर्देश नहीं है। कारक विश्लेषण मानता है कि विभिन्न विशेषताओं पर सभी रेटिंग डेटा को कुछ महत्वपूर्ण आयामों तक कम किया जा सकता है। यह कमी इसलिए संभव है क्योंकि कुछ विशेषताएँ एक-दूसरे से संबंधित हो सकती हैं। किसी विशेषता को दी गई रेटिंग आंशिक रूप से अन्य विशेषताओं के प्रभाव का परिणाम होती है। सांख्यिकीय एल्गोरिदम रेटिंग को उसके विभिन्न घटकों में विभाजित करता है (जिसे कच्चा स्कोर कहा जाता है) और आंशिक स्कोर को अंतर्निहित कारक स्कोर में पुनर्निर्मित करता है। प्रारंभिक कच्चे स्कोर और अंतिम कारक स्कोर के बीच सहसंबंध की डिग्री को कारक लोडिंग कहा जाता है।

फायदे

  • वस्तुनिष्ठ और व्यक्तिपरक दोनों विशेषताओं का उपयोग किया जा सकता है, बशर्ते व्यक्तिपरक विशेषताओं को अंकों में परिवर्तित किया जा सके।
  • कारक विश्लेषण अव्यक्त आयामों या निर्माणों की पहचान कर सकता है जो प्रत्यक्ष विश्लेषण नहीं कर सकता है।
  • यह आसान और सस्ता है.

नुकसान

  • उपयोगिता उत्पाद विशेषताओं का पर्याप्त सेट एकत्र करने की शोधकर्ताओं की क्षमता पर निर्भर करती है। यदि महत्वपूर्ण विशेषताओं को बाहर रखा जाता है या उपेक्षित किया जाता है, तो प्रक्रिया का मूल्य कम हो जाता है।
  • यदि देखे गए चर के सेट एक-दूसरे के समान हैं और अन्य वस्तुओं से अलग हैं, तो कारक विश्लेषण उन्हें ही कारक प्रदान करेगा। यह उन कारकों को अस्पष्ट कर सकता है जो अधिक दिलचस्प रिश्तों का प्रतिनिधित्व करते हैं।
  • नामकरण कारकों के लिए सिद्धांत के ज्ञान की आवश्यकता हो सकती है क्योंकि प्रतीत होता है कि भिन्न गुण अज्ञात कारणों से दृढ़ता से सहसंबद्ध हो सकते हैं।

भौतिक और जैविक विज्ञान में

भू-रसायन विज्ञान, जल रसायन विज्ञान जैसे भौतिक विज्ञानों में भी कारक विश्लेषण का व्यापक रूप से उपयोग किया गया है।[56] खगोल भौतिकी और ब्रह्मांड विज्ञान, साथ ही जैविक विज्ञान, जैसे पारिस्थितिकी, आणविक जीव विज्ञान, तंत्रिका विज्ञान और जैव रसायन।

भूजल गुणवत्ता प्रबंधन में, विभिन्न रसायनों के स्थानिक वितरण को जोड़ना महत्वपूर्ण है विभिन्न संभावित स्रोतों के पैरामीटर, जिनके अलग-अलग रासायनिक हस्ताक्षर हैं। उदाहरण के लिए, सल्फाइड खदान उच्च स्तर की अम्लता, घुले हुए सल्फेट्स और संक्रमण धातुओं से जुड़ी होने की संभावना है। इन हस्ताक्षरों को आर-मोड कारक विश्लेषण के माध्यम से कारकों के रूप में पहचाना जा सकता है, और कारक स्कोर को समोच्च करके संभावित स्रोतों का स्थान सुझाया जा सकता है।[57] भू-रसायन विज्ञान में, विभिन्न कारक विभिन्न खनिज संघों और इस प्रकार खनिजकरण के अनुरूप हो सकते हैं।[58]


माइक्रोएरे विश्लेषण में

एफिमेट्रिक्स जीनचिप्स के लिए जांच स्तर पर उच्च-घनत्व oligonucleotide डीएनए माइक्रोएरे डेटा को सारांशित करने के लिए कारक विश्लेषण का उपयोग किया जा सकता है। इस मामले में, अव्यक्त चर नमूने में आरएनए एकाग्रता से मेल खाता है।[59]


कार्यान्वयन

1980 के दशक से कई सांख्यिकीय विश्लेषण कार्यक्रमों में कारक विश्लेषण लागू किया गया है:

स्टैंडअलोन

यह भी देखें

टिप्पणियाँ


संदर्भ

  1. Jöreskog, Karl G. (1983). "Factor Analysis as an Errors-in-Variables Model". आधुनिक मनोवैज्ञानिक मापन के सिद्धांत. Hillsdale: Erlbaum. pp. 185–196. ISBN 0-89859-277-1.
  2. Bandalos, Deborah L. (2017). सामाजिक विज्ञान के लिए मापन सिद्धांत और अनुप्रयोग. The Guilford Press.
  3. 3.0 3.1 3.2 Harman, Harry H. (1976). आधुनिक कारक विश्लेषण. University of Chicago Press. pp. 175, 176. ISBN 978-0-226-31652-9.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Polit DF Beck CT (2012). Nursing Research: Generating and Assessing Evidence for Nursing Practice, 9th ed. Philadelphia, USA: Wolters Klower Health, Lippincott Williams & Wilkins.
  5. Meng, J. (2011). "एक गैर-नकारात्मक हाइब्रिड कारक मॉडल का उपयोग करके ग्लियोब्लास्टोमा में माइक्रोआरएनए और प्रतिलेखन कारकों द्वारा सहकारी जीन नियमों को उजागर करें". International Conference on Acoustics, Speech and Signal Processing. Archived from the original on 2011-11-23.
  6. Liou, C.-Y.; Musicus, B.R. (2008). "Cross Entropy Approximation of Structured Gaussian Covariance Matrices" (PDF). IEEE Transactions on Signal Processing. 56 (7): 3362–3367. Bibcode:2008ITSP...56.3362L. doi:10.1109/TSP.2008.917878. S2CID 15255630.
  7. 7.0 7.1 7.2 Zwick, William R.; Velicer, Wayne F. (1986). "बनाए रखने के लिए घटकों की संख्या निर्धारित करने के लिए पांच नियमों की तुलना।". Psychological Bulletin. 99 (3): 432–442. doi:10.1037/0033-2909.99.3.432.
  8. Horn, John L. (June 1965). "कारक विश्लेषण में कारकों की संख्या के लिए एक तर्क और परीक्षण". Psychometrika. 30 (2): 179–185. doi:10.1007/BF02289447. PMID 14306381. S2CID 19663974.
  9. Dobriban, Edgar (2017-10-02). "कारक विश्लेषण और पीसीए के लिए क्रमपरिवर्तन विधियाँ" (in English). arXiv:1710.00479v2 [math.ST].
  10. * Ledesma, R.D.; Valero-Mora, P. (2007). "Determining the Number of Factors to Retain in EFA: An easy-to-use computer program for carrying out Parallel Analysis". Practical Assessment Research & Evaluation. 12 (2): 1–11.
  11. Tran, U. S., & Formann, A. K. (2009). Performance of parallel analysis in retrieving unidimensionality in the presence of binary data. Educational and Psychological Measurement, 69, 50-61.
  12. 12.0 12.1 Velicer, W.F. (1976). "आंशिक सहसंबंधों के मैट्रिक्स से घटकों की संख्या निर्धारित करना". Psychometrika. 41 (3): 321–327. doi:10.1007/bf02293557. S2CID 122907389.
  13. 13.0 13.1 Courtney, M. G. R. (2013). Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2.0 to make more judicious estimations. Practical Assessment, Research and Evaluation, 18(8). Available online: http://pareonline.net/getvn.asp?v=18&n=8
  14. 14.0 14.1 Warne, R. T.; Larsen, R. (2014). "खोजपूर्ण कारक विश्लेषण में कारकों की संख्या निर्धारित करने के लिए गुटमैन नियम के प्रस्तावित संशोधन का मूल्यांकन करना". Psychological Test and Assessment Modeling. 56: 104–123.
  15. Ruscio, John; Roche, B. (2012). "ज्ञात तथ्यात्मक संरचना के तुलनात्मक डेटा का उपयोग करके खोजपूर्ण कारक विश्लेषण में बनाए रखने के लिए कारकों की संख्या निर्धारित करना". Psychological Assessment. 24 (2): 282–292. doi:10.1037/a0025697. PMID 21966933.
  16. Garrido, L. E., & Abad, F. J., & Ponsoda, V. (2012). A new look at Horn's parallel analysis with ordinal variables. Psychological Methods. Advance online publication. doi:10.1037/a0030005
  17. Revelle, William (2007). "Determining the number of factors: the example of the NEO-PI-R" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  18. Revelle, William (8 January 2020). "psych: Procedures for Psychological, Psychometric, and PersonalityResearch".
  19. Kaiser, Henry F. (April 1960). "कारक विश्लेषण के लिए इलेक्ट्रॉनिक कंप्यूटर का अनुप्रयोग". Educational and Psychological Measurement. 20 (1): 141–151. doi:10.1177/001316446002000116. S2CID 146138712.
  20. Bandalos, D.L.; Boehm-Kaufman, M.R. (2008). "Four common misconceptions in exploratory factor analysis". In Lance, Charles E.; Vandenberg, Robert J. (eds.). Statistical and Methodological Myths and Urban Legends: Doctrine, Verity and Fable in the Organizational and Social Sciences. Taylor & Francis. pp. 61–87. ISBN 978-0-8058-6237-9.
  21. Larsen, R.; Warne, R. T. (2010). "खोजपूर्ण कारक विश्लेषण में eigenvalues ​​​​के लिए आत्मविश्वास अंतराल का अनुमान लगाना". Behavior Research Methods. 42 (3): 871–876. doi:10.3758/BRM.42.3.871. PMID 20805609. {{cite journal}}: zero width space character in |title= at position 40 (help)
  22. Cattell, Raymond (1966). "गुणनखंडों की संख्या के लिए रोड़ी परीक्षण". Multivariate Behavioral Research. 1 (2): 245–76. doi:10.1207/s15327906mbr0102_10. PMID 26828106.
  23. Alpaydin (2020). मशीन लर्निंग का परिचय (5th ed.). pp. 528–9.
  24. "कारक रोटेशन के तरीके". Stack Exchange. Retrieved 7 November 2022.
  25. Neuhaus, Jack O; Wrigley, C. (1954). "क्वार्टिमैक्स विधि". British Journal of Statistical Psychology. 7 (2): 81–91. doi:10.1111/j.2044-8317.1954.tb00147.x.
  26. Russell, D.W. (December 2002). "In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin". Personality and Social Psychology Bulletin. 28 (12): 1629–46. doi:10.1177/014616702237645. S2CID 143687603.
  27. 27.0 27.1 Fog, A (2022). "Two-Dimensional Models of Cultural Differences: Statistical and Theoretical Analysis" (PDF). Cross-Cultural Research. 57 (2–3): 115–165. doi:10.1177/10693971221135703. S2CID 253153619.
  28. Bartholomew, D.J.; Steele, F.; Galbraith, J.; Moustaki, I. (2008). बहुभिन्नरूपी सामाजिक विज्ञान डेटा का विश्लेषण. Statistics in the Social and Behavioral Sciences Series (2nd ed.). Taylor & Francis. ISBN 978-1584889601.
  29. Jolliffe I.T. Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p. 28 illus. ISBN 978-0-387-95442-4
  30. Cattell, R. B. (1952). Factor analysis. New York: Harper.
  31. Fruchter, B. (1954). Introduction to Factor Analysis. Van Nostrand.
  32. Cattell, R. B. (1978). Use of Factor Analysis in Behavioral and Life Sciences. New York: Plenum.
  33. Child, D. (2006). The Essentials of Factor Analysis, 3rd edition. Bloomsbury Academic Press.
  34. Gorsuch, R. L. (1983). Factor Analysis, 2nd edition. Hillsdale, NJ: Erlbaum.
  35. McDonald, R. P. (1985). Factor Analysis and Related Methods. Hillsdale, NJ: Erlbaum.
  36. 36.0 36.1 Fabrigar; et al. (1999). "मनोवैज्ञानिक अनुसंधान में खोजपूर्ण कारक विश्लेषण के उपयोग का मूल्यांकन करना।" (PDF). Psychological Methods.
  37. 37.0 37.1 Suhr, Diane (2009). "प्रमुख घटक विश्लेषण बनाम खोजपूर्ण कारक विश्लेषण" (PDF). SUGI 30 Proceedings. Retrieved 5 April 2012.
  38. SAS Statistics. "प्रमुख घटक विश्लेषण" (PDF). SAS Support Textbook.
  39. Meglen, R.R. (1991). "Examining Large Databases: A Chemometric Approach Using Principal Component Analysis". Journal of Chemometrics. 5 (3): 163–179. doi:10.1002/cem.1180050305. S2CID 120886184.
  40. Brown, J. D. (January 2009). "Principal components analysis and exploratory factor analysis – Definitions, differences and choices" (PDF). Shiken: JALT Testing & Evaluation SIG Newsletter. Retrieved 16 April 2012.
  41. 41.0 41.1 Mulaik, Stanley A (2010). कारक विश्लेषण की नींव. दूसरा संस्करण. Boca Raton, Florida: CRC Press. p. 6. ISBN 978-1-4200-9961-4.
  42. Spearman, Charles (1904). "सामान्य बुद्धि वस्तुनिष्ठ रूप से निर्धारित और मापी जाती है". American Journal of Psychology. 15 (2): 201–293. doi:10.2307/1412107. JSTOR 1412107.
  43. Bartholomew, D. J. (1995). "स्पीयरमैन और कारक विश्लेषण की उत्पत्ति और विकास". British Journal of Mathematical and Statistical Psychology. 48 (2): 211–220. doi:10.1111/j.2044-8317.1995.tb01060.x.
  44. Thurstone, Louis (1931). "एकाधिक कारक विश्लेषण". Psychological Review. 38 (5): 406–427. doi:10.1037/h0069792.
  45. Thurstone, Louis (1934). "मन के सदिश". The Psychological Review. 41: 1–32. doi:10.1037/h0075959.
  46. Thurstone, L. L. (1935). मन के सदिश. प्राथमिक लक्षणों के अलगाव के लिए बहु-कारक विश्लेषण।. Chicago, Illinois: University of Chicago Press.
  47. Bock, Robert (2007). "Rethinking Thurstone". In Cudeck, Robert; MacCallum, Robert C. (eds.). 100 पर कारक विश्लेषण. Mahwah, New Jersey: Lawrence Erlbaum Associates. p. 37. ISBN 978-0-8058-6212-6.
  48. Mckeown, Bruce (2013-06-21). क्यू पद्धति. ISBN 9781452242194. OCLC 841672556.
  49. Stephenson, W. (August 1935). "कारक विश्लेषण की तकनीक". Nature. 136 (3434): 297. Bibcode:1935Natur.136..297S. doi:10.1038/136297b0. ISSN 0028-0836. S2CID 26952603.
  50. Sternberg, R. J. (1977). Metaphors of Mind: Conceptions of the Nature of Intelligence. New York: Cambridge University Press. pp. 85–111.[verification needed]
  51. "कारक विश्लेषण". Archived from the original on August 18, 2004. Retrieved July 22, 2004.
  52. Gregg, Phillip M.; Banks, Arthur S. (1965). "Dimensions of political systems: Factor analysis of a cross-polity survey". American Political Science Review (in English). 59 (3): 602–614. doi:10.2307/1953171.
  53. Niemi, Richard G.; Craig, Stephen C.; Mattei, Franco (December 1991). "Measuring Internal Political Efficacy in the 1988 National Election Study". American Political Science Review (in English). 85 (4): 1407–1413. doi:10.2307/1963953. ISSN 0003-0554.
  54. Franch, Fabio (May 2021). "Political preferences nowcasting with factor analysis and internet data: The 2012 and 2016 US presidential elections". Technological Forecasting and Social Change (in English). 166: 120667. doi:10.1016/j.techfore.2021.120667. ISSN 0040-1625.
  55. Ritter, N. (2012). A comparison of distribution-free and non-distribution free methods in factor analysis. Paper presented at Southwestern Educational Research Association (SERA) Conference 2012, New Orleans, LA (ED529153).
  56. Subbarao, C.; Subbarao, N.V.; Chandu, S.N. (December 1996). "कारक विश्लेषण का उपयोग करके भूजल संदूषण का लक्षण वर्णन". Environmental Geology. 28 (4): 175–180. Bibcode:1996EnGeo..28..175S. doi:10.1007/s002540050091. S2CID 129655232.
  57. Love, D.; Hallbauer, D.K.; Amos, A.; Hranova, R.K. (2004). "Factor analysis as a tool in groundwater quality management: two southern African case studies". Physics and Chemistry of the Earth. 29 (15–18): 1135–43. Bibcode:2004PCE....29.1135L. doi:10.1016/j.pce.2004.09.027.
  58. Barton, E.S.; Hallbauer, D.K. (1996). "Trace-element and U—Pb isotope compositions of pyrite types in the Proterozoic Black Reef, Transvaal Sequence, South Africa: Implications on genesis and age". Chemical Geology. 133 (1–4): 173–199. doi:10.1016/S0009-2541(96)00075-7.
  59. Hochreiter, Sepp; Clevert, Djork-Arné; Obermayer, Klaus (2006). "एफिमेट्रिक्स जांच स्तर डेटा के लिए एक नई सारांशीकरण विधि". Bioinformatics. 22 (8): 943–9. doi:10.1093/bioinformatics/btl033. PMID 16473874.
  60. "sklearn.decomposition.FactorAnalysis — scikit-learn 0.23.2 documentation". scikit-learn.org.
  61. MacCallum, Robert (June 1983). "A comparison of factor analysis programs in SPSS, BMDP, and SAS". Psychometrika. 48 (2): 223–231. doi:10.1007/BF02294017. S2CID 120770421.


अग्रिम पठन


बाहरी संबंध