आइटम प्रतिक्रिया सिद्धांत

From Vigyanwiki
Revision as of 22:05, 11 August 2023 by alpha>Sangeeta

साइकोमेट्रिक्स में, आइटम रिस्पांस थ्योरी (आईआरटी) (इसे लेटेंट ट्रेट थ्योरी, स्ट्रांग ट्रू स्कोर थ्योरी अथवा मॉडर्न मेन्टल टेस्ट थ्योरी के रूप में भी जाना जाता है) क्षमताओं, दृष्टिकोण अथवा अन्य वेरिएबल्स को मापने वाले परीक्षणों, प्रश्नावली और समान उपकरणों के डिजाइन, विश्लेषण और स्कोरिंग के लिए प्रतिमान है। यह परीक्षण आइटम पर व्यक्तियों के प्रदर्शन और उस आइटम को मापने के लिए डिज़ाइन की गई क्षमता के समग्र माप पर परीक्षणकर्ताओं के प्रदर्शन के स्तर के मध्य संबंधों पर आधारित परीक्षण का सिद्धांत है। आइटम और परीक्षार्थी दोनों की विशेषताओं का प्रतिनिधित्व करने के लिए कई भिन्न-भिन्न सांख्यिकीय मॉडल का उपयोग किया जाता है।[1] स्केल बनाने और प्रश्नावली प्रतिक्रियाओं का मूल्यांकन करने के लिए सरल विकल्पों के विपरीत, यह नहीं माना जाता है कि प्रत्येक आइटम समान रूप से कठिन है। उदाहरण के लिए, यह आईआरटी को लिकर्ट स्केलिंग से पृथक करता है, जिसमें सभी वस्तुओं को एक-दूसरे की प्रतिकृति माना जाता है अथवा अन्य शब्दों में वस्तुओं को समानांतर उपकरण माना जाता है।[2] इसके विपरीत, आइटम रिस्पांस थ्योरी प्रत्येक आइटम (आइटम विशेषता वक्र, या #The_item_response_function) की कठिनाई को स्केलिंग आइटम में शामिल की जाने वाली जानकारी के रूप में मानता है।

यह आंकड़े के परीक्षण के लिए संबंधित गणितीय मॉडल के अनुप्रयोग पर आधारित है। क्योंकि इसे अक्सर शास्त्रीय परीक्षण सिद्धांत से बेहतर माना जाता है,[3] संयुक्त राज्य अमेरिका में स्केल विकसित करने के लिए यह पसंदीदा तरीका है, विशेष रूप से जब इष्टतम निर्णयों की मांग की जाती है, जैसे कि तथाकथित उच्च जोखिम परीक्षण|हाई-स्टेक टेस्ट, जैसे, स्नातक अभिलेख परीक्षा (जीआरई) और स्नातक प्रबंधन नामांकन परीक्षा (जीमैट)।

शास्त्रीय परीक्षण सिद्धांत के परीक्षण-स्तरीय फोकस के विपरीत, आइटम रिस्पांस थ्योरी का नाम आइटम पर सिद्धांत के फोकस के कारण है। इस प्रकार आईआरटी परीक्षण में प्रत्येक आइटम के लिए दी गई क्षमता के प्रत्येक परीक्षार्थी की प्रतिक्रिया को मॉडल करता है। आइटम शब्द सामान्य है, जिसमें सभी प्रकार की सूचनात्मक वस्तुएं शामिल हैं। वे बहुविकल्पीय प्रश्न हो सकते हैं जिनमें गलत और सही उत्तर होते हैं, लेकिन आम तौर पर प्रश्नावली पर बयान भी होते हैं जो उत्तरदाताओं को सहमति के स्तर ( दर्ज़ा पैमाने या लाइकेर्ट स्केल ), या रोगी के लक्षणों को वर्तमान/अनुपस्थित, या नैदानिक ​​​​जानकारी के रूप में इंगित करने की अनुमति देते हैं। जटिल प्रणालियाँ.

आईआरटी इस विचार पर आधारित है कि किसी आइटम के लिए सही/कुंजीबद्ध प्रतिक्रिया की संभावना व्यक्ति और आइटम मापदंडों का गणितीय कार्य है। (व्यक्ति और वस्तु मापदंडों के गणितीय कार्य की अभिव्यक्ति लेविन के समीकरण, बी = एफ (पी, ई) के अनुरूप है, जो दावा करता है कि व्यवहार उनके वातावरण में व्यक्ति का कार्य है।) व्यक्ति पैरामीटर को (आमतौर पर) माना जाता है अव्यक्त गुण या आयाम। उदाहरणों में सामान्य बुद्धि या दृष्टिकोण की ताकत शामिल है। जिन मापदंडों पर वस्तुओं की विशेषता होती है उनमें उनकी कठिनाई शामिल होती है (कठिनाई सीमा पर उनके स्थान के रूप में जाना जाता है); भेदभाव (ढलान या सहसंबंध), यह दर्शाता है कि व्यक्तियों की सफलता की दर उनकी क्षमता के साथ कितनी तेजी से भिन्न होती है; और छद्म अनुमान लगाने वाला पैरामीटर, (निचले) स्पर्शोन्मुख को चिह्नित करता है जिस पर सबसे कम सक्षम व्यक्ति भी अनुमान लगाने के कारण स्कोर करेंगे (उदाहरण के लिए, चार संभावित प्रतिक्रियाओं के साथ बहुविकल्पीय आइटम पर शुद्ध मौके के लिए 25%)।

उसी तरह, आईआरटी का उपयोग ऑनलाइन सोशल नेटवर्क में मानव व्यवहार को मापने के लिए किया जा सकता है। विभिन्न लोगों द्वारा व्यक्त किए गए विचारों को त्रित करके आईआरटी का उपयोग करके अध्ययन किया जा सकता है। जानकारी को गलत सूचना या सच्ची जानकारी के रूप में वर्गीकृत करने में इसके उपयोग का भी मूल्यांकन किया गया है।

अवलोकन

आइटम प्रतिक्रिया फ़ंक्शन की अवधारणा 1950 से पहले की थी। सिद्धांत के रूप में आईआरटी का अग्रणी कार्य 1950 और 1960 के दशक के दौरान हुआ था। तीन अग्रदूतों में शैक्षिक परीक्षण सेवा के मनोचिकित्सक फ्रेडरिक एम. लॉर्ड थे,[4] डेनिश गणितज्ञ जॉर्ज रश और ऑस्ट्रियाई समाजशास्त्री पॉल लाज़र्सफ़ेल्ड, जिन्होंने स्वतंत्र रूप से समानांतर अनुसंधान किया। आईआरटी की प्रगति को आगे बढ़ाने वाले प्रमुख व्यक्तियों में बेंजामिन ड्रेक राइट और डेविड एंड्रीच शामिल हैं। 1970 और 1980 के दशक के अंत तक आईआरटी का व्यापक रूप से उपयोग नहीं किया गया था, जब ओर चिकित्सकों को आईआरटी की उपयोगिता और फायदे बताए गए थे, और दूसरी ओर व्यक्तिगत कंप्यूटर ने कई शोधकर्ताओं को आईआरटी के लिए आवश्यक कंप्यूटिंग शक्ति तक पहुंच प्रदान की थी।

अन्य बातों के अलावा, आईआरटी का उद्देश्य यह मूल्यांकन करने के लिए रूपरेखा प्रदान करना है कि मूल्यांकन कितनी अच्छी तरह काम करता है, और मूल्यांकन पर व्यक्तिगत आइटम कितनी अच्छी तरह काम करते हैं। आईआरटी का सबसे आम अनुप्रयोग शिक्षा में है, जहां मनोचिकित्सक इसका उपयोग परीक्षण (छात्र मूल्यांकन) को विकसित करने और डिजाइन करने, परीक्षाओं के लिए वस्तुओं के बैंक बनाए रखने और परीक्षाओं के क्रमिक संस्करणों के लिए वस्तुओं की कठिनाइयों को बराबर करने के लिए करते हैं (उदाहरण के लिए, मध्य तुलना की अनुमति देने के लिए) समय के साथ परिणाम)।[5] आईआरटी मॉडल को अक्सर अव्यक्त विशेषता मॉडल के रूप में जाना जाता है। अव्यक्त शब्द का उपयोग इस बात पर जोर देने के लिए किया जाता है कि भिन्न-भिन्न आइटम प्रतिक्रियाओं को परिकल्पित लक्षणों, निर्माणों या विशेषताओं की अवलोकन योग्य अभिव्यक्तियों के रूप में लिया जाता है, जिन्हें सीधे तौर पर नहीं देखा जाता है, लेकिन जिन्हें प्रकट प्रतिक्रियाओं से अनुमान लगाया जाना चाहिए। अव्यक्त विशेषता मॉडल समाजशास्त्र के क्षेत्र में विकसित किए गए थे, लेकिन वे वस्तुतः आईआरटी मॉडल के समान हैं।

आईआरटी को आम तौर पर शास्त्रीय परीक्षण सिद्धांत (सीटीटी) पर सुधार के रूप में दावा किया जाता है। उन कार्यों के लिए जिन्हें सीटीटी का उपयोग करके पूरा किया जा सकता है, आईआरटी आम तौर पर अधिक लचीलापन लाता है और अधिक परिष्कृत जानकारी प्रदान करता है। कुछ अनुप्रयोग, जैसे कंप्यूटर-अनुकूली परीक्षण, आईआरटी द्वारा सक्षम हैं और केवल शास्त्रीय परीक्षण सिद्धांत का उपयोग करके उचित रूप से निष्पादित नहीं किया जा सकता है। सीटीटी की तुलना में आईआरटी का अन्य लाभ यह है कि आईआरटी द्वारा प्रदान की जाने वाली अधिक परिष्कृत जानकारी शोधकर्ता को शैक्षिक मूल्यांकन की विश्वसनीयता (साइकोमेट्रिक) में सुधार करने की अनुमति देती है।

आईआरटी में तीन धारणाएँ शामिल हैं:

  1. आयामी लक्षण द्वारा दर्शाया गया  ;
  2. वस्तुओं की स्थानीय स्वतंत्रता;
  3. किसी आइटम पर किसी व्यक्ति की प्रतिक्रिया को गणितीय आइटम प्रतिक्रिया फ़ंक्शन (आईआरएफ) द्वारा मॉडल किया जा सकता है।

विशेषता को पैमाने पर मापने योग्य माना जाता है ( परीक्षण का अस्तित्व ही इसे मानता है), आमतौर पर 0.0 के माध्य और 1.0 के मानक विचलन के साथ मानक पैमाने पर सेट किया जाता है। आयामीता की व्याख्या रूपता के रूप में की जानी चाहिए, गुणवत्ता जिसे किसी दिए गए उद्देश्य या उपयोग के संबंध में परिभाषित या अनुभवजन्य रूप से प्रदर्शित किया जाना चाहिए, लेकिन ऐसी मात्रा नहीं जिसे मापा जा सके। 'स्थानीय स्वतंत्रता' का अर्थ है (ए) कि आइटम के उपयोग की संभावना किसी अन्य आइटम का उपयोग करने से संबंधित नहीं है और (बी) किसी आइटम पर प्रतिक्रिया प्रत्येक परीक्षार्थी का स्वतंत्र निर्णय है, अर्थात, इसमें कोई धोखाधड़ी या जोड़ी या समूह कार्य नहीं है। आयामीता के विषय की जांच अक्सर कारक विश्लेषण के साथ की जाती है, जबकि आईआरएफ आईआरटी का मूल निर्माण खंड है और अधिकांश अनुसंधान और साहित्य का केंद्र है।

आइटम प्रतिक्रिया फ़ंक्शन

आईआरएफ संभावना देता है कि किसी दिए गए योग्यता स्तर वाला व्यक्ति सही उत्तर देगा। कम क्षमता वाले व्यक्तियों के पास कम मौके होते हैं, जबकि उच्च क्षमता वाले व्यक्तियों के सही उत्तर देने की संभावना बहुत अधिक होती है; उदाहरण के लिए, उच्च गणित क्षमता वाले छात्रों को गणित का कोई आइटम सही मिलने की अधिक संभावना होती है। संभाव्यता का सटीक मान, क्षमता के अलावा, आईआरएफ के लिए आइटम मापदंडों के सेट पर निर्भर करता है।

तीन पैरामीटर लॉजिस्टिक मॉडल

अंगूठाउदाहरण के लिए, तीन पैरामीटर लॉजिस्टिक मॉडल (3PL) में, द्विभाजन आइटम i, जो आमतौर पर बहुविकल्पीय प्रश्न है, के लिए सही प्रतिक्रिया की संभावना है:

कहाँ इंगित करता है कि आइटम मापदंडों का अनुमान लगाने के उद्देश्य से व्यक्ति की क्षमताओं को सामान्य वितरण से नमूने के रूप में तैयार किया गया है। आइटम मापदंडों का अनुमान लगाए जाने के बाद, रिपोर्टिंग उद्देश्यों के लिए व्यक्तिगत लोगों की क्षमताओं का अनुमान लगाया जाता है। , , और आइटम पैरामीटर हैं. आइटम पैरामीटर आईआरएफ का आकार निर्धारित करते हैं। चित्र 1 आदर्श 3पीएल आईसीसी को दर्शाता है।

आइटम पैरामीटर की व्याख्या मानक लॉजिस्टिक फ़ंक्शन के आकार को बदलने के रूप में की जा सकती है:

संक्षेप में, मापदंडों की व्याख्या इस प्रकार की जाती है (सुपाठ्यता के लिए सबस्क्रिप्ट छोड़ना); b सबसे बुनियादी है, इसलिए पहले सूचीबद्ध किया गया है:

  • बी - कठिनाई, आइटम स्थान: मध्य का आधा रास्ता बिंदु (न्यूनतम) और 1 (अधिकतम), वह भी जहां ढलान अधिकतम है।
  • ए - भेदभाव, पैमाना, ढलान: अधिकतम ढलान
  • सी - छद्म अनुमान, मौका, स्पर्शोन्मुख न्यूनतम

अगर फिर ये सरल हो जाते हैं और जिसका अर्थ है कि बी 50% सफलता स्तर (कठिनाई) के बराबर है, और ए (चार से विभाजित) अधिकतम ढलान (भेदभाव) है, जो 50% सफलता स्तर पर होता है। इसके अलावा, सही प्रतिक्रिया का लॉगिट (लॉग कठिनाइयाँ) है (मानते हुए ): विशेष रूप से यदि क्षमता θ कठिनाई बी के बराबर है, तो सही उत्तर के लिए सम संभावनाएं (1:1, इसलिए लॉगिट 0) हैं, जितनी अधिक क्षमता कठिनाई से ऊपर (या नीचे) होगी, सही उत्तर की संभावना उतनी ही अधिक (या कम) होगी प्रतिक्रिया, भेदभाव के साथ यह निर्धारित करती है कि क्षमता के साथ संभावनाएँ कितनी तेजी से बढ़ती या घटती हैं।

दूसरे शब्दों में, मानक लॉजिस्टिक फ़ंक्शन में एसिम्प्टोटिक न्यूनतम 0 है (), 0 के आसपास केंद्रित है (, ), और अधिकतम ढलान है h> पैरामीटर क्षैतिज पैमाने को फैलाता है पैरामीटर क्षैतिज पैमाने को बदलता है, और से ऊर्ध्वाधर पैमाने को संपीड़ित करता है को इसका विवरण नीचे दिया गया है।

पैरामीटर आइटम स्थान का प्रतिनिधित्व करता है, जिसे प्राप्ति परीक्षण के मामले में, आइटम कठिनाई के रूप में जाना जाता है। बात यहीं पर है जहां आईआरएफ का अधिकतम ढलान है, और जहां मूल्य न्यूनतम मूल्य के मध्य आधा है और 1 का अधिकतम मान। उदाहरण आइटम मध्यम कठिनाई का है =0.0, जो वितरण के केंद्र के निकट है। ध्यान दें कि यह मॉडल आइटम की कठिनाई और व्यक्ति की विशेषता को ही सातत्य पर मापता है। इस प्रकार, किसी वस्तु के बारे में यह बात करना वैध है कि वह व्यक्ति ए के गुण स्तर के समान कठिन है या किसी व्यक्ति के गुण स्तर के बारे में वस्तु वाई की कठिनाई के समान है, इस अर्थ में कि किसी वस्तु से जुड़े कार्य का सफल प्रदर्शन विशिष्ट को दर्शाता है क्षमता का स्तर.

आइटम पैरामीटर वस्तु के भेदभाव का प्रतिनिधित्व करता है: अर्थात्, वह डिग्री जिस तक वस्तु अव्यक्त सातत्य पर विभिन्न क्षेत्रों में व्यक्तियों के मध्य भेदभाव करती है। यह पैरामीटर आईआरएफ के ढलान को दर्शाता है जहां ढलान अपने अधिकतम पर है। उदाहरण आइटम है =1.0, जो काफी अच्छी तरह से भेदभाव करता है; कम क्षमता वाले व्यक्तियों के पास वास्तव में उच्च क्षमता वाले व्यक्तियों की तुलना में सही उत्तर देने की बहुत कम संभावना होती है। यह भेदभाव पैरामीटर मानक भारित रैखिक (साधारण न्यूनतम वर्ग, सामान्य न्यूनतम वर्ग) प्रतिगमन में संबंधित आइटम या संकेतक के भार गुणांक से मेल खाता है और इसलिए अंतर्निहित अव्यक्त अवधारणा के अप्रशिक्षित माप के लिए संकेतकों का भारित सूचकांक बनाने के लिए इसका उपयोग किया जा सकता है।

बहुविकल्पीय आइटम जैसी वस्तुओं के लिए, पैरामीटर इसका उपयोग सही प्रतिक्रिया की संभावना पर अनुमान लगाने के प्रभावों को ध्यान में रखने के प्रयास में किया जाता है। यह इस संभावना को इंगित करता है कि बहुत कम क्षमता वाले व्यक्तियों को यह आइटम संयोग से सही मिल जाएगा, गणितीय रूप से निम्न अनंतस्पर्शी के रूप में दर्शाया गया है। चार-विकल्प वाले बहुविकल्पी आइटम में उदाहरण आइटम की तरह आईआरएफ हो सकता है; अत्यंत कम क्षमता वाले उम्मीदवार द्वारा सही उत्तर का अनुमान लगाने की 1/4 संभावना है, इसलिए लगभग 0.25 होगा. यह दृष्टिकोण मानता है कि सभी विकल्प समान रूप से प्रशंसनीय हैं, क्योंकि यदि विकल्प का कोई मतलब नहीं है, तो सबसे कम क्षमता वाला व्यक्ति भी इसे त्यागने में सक्षम होगा, इसलिए आईआरटी पैरामीटर अनुमान विधियां इसे ध्यान में रखती हैं और अनुमान लगाती हैं देखे गए आंकड़ों के आधार पर।[6]

आईआरटी मॉडल

मोटे तौर पर, आईआरटी मॉडल को दो परिवारों में विभाजित किया जा सकता है: आयामी और बहुआयामी। आयामी मॉडल के लिए ल गुण (क्षमता) आयाम की आवश्यकता होती है . बहुआयामी आईआरटी मॉडल मॉडल प्रतिक्रिया डेटा को कई लक्षणों से उत्पन्न होने की परिकल्पना की गई है। हालाँकि, अत्यधिक बढ़ी हुई जटिलता के कारण, अधिकांश आईआरटी अनुसंधान और अनुप्रयोग आयामी मॉडल का उपयोग करते हैं।

आईआरटी मॉडल को प्राप्त प्रतिक्रियाओं की संख्या के आधार पर भी वर्गीकृत किया जा सकता है। विशिष्ट बहुविकल्पी वस्तु द्विभाजित होती है; भले ही चार या पांच विकल्प हों, फिर भी इसे सही/गलत (सही/गलत) के रूप में ही स्कोर किया जाता है। मॉडलों का अन्य वर्ग बहुपद परिणामों पर लागू होता है, जहां प्रत्येक प्रतिक्रिया का अलग स्कोर मान होता है।[7][8] इसका सामान्य उदाहरण लिकर्ट स्केल-प्रकार की वस्तुएं हैं, उदाहरण के लिए, 1 से 5 के पैमाने पर दर।

आईआरटी मापदंडों की संख्या

द्विभाजित आईआरटी मॉडल का वर्णन उनके द्वारा उपयोग किए जाने वाले मापदंडों की संख्या के आधार पर किया जाता है।[9] 3PL का नाम इसलिए रखा गया है क्योंकि यह तीन आइटम मापदंडों को नियोजित करता है। दो-पैरामीटर मॉडल (2PL) मानता है कि डेटा का कोई अनुमान नहीं है, लेकिन आइटम स्थान के संदर्भ में भिन्न हो सकते हैं () और भेदभाव (). -पैरामीटर मॉडल (1PL) मानता है कि अनुमान लगाना क्षमता का हिस्सा है और मॉडल में फिट होने वाली सभी वस्तुओं में समान भेदभाव होते हैं, ताकि वस्तुओं को केवल ही पैरामीटर द्वारा वर्णित किया जा सके (). इसके परिणामस्वरूप -पैरामीटर मॉडल में विशिष्ट वस्तुनिष्ठता का गुण होता है, जिसका अर्थ है कि आइटम की कठिनाई की रैंक क्षमता से स्वतंत्र सभी उत्तरदाताओं के लिए समान है, और व्यक्ति की क्षमता की रैंक कठिनाई से स्वतंत्र रूप से आइटम के लिए समान है। इस प्रकार, 1 पैरामीटर मॉडल नमूना स्वतंत्र हैं, संपत्ति जो दो-पैरामीटर और तीन-पैरामीटर मॉडल के लिए मान्य नहीं है। इसके अतिरिक्त, सैद्धांतिक रूप से चार-पैरामीटर मॉडल (4PL) है, जिसमें ऊपरी अनंतस्पर्शी है, जिसे द्वारा दर्शाया गया है कहाँ 3PL में द्वारा प्रतिस्थापित किया गया है . हालाँकि, इसका उपयोग बहुत कम किया जाता है। ध्यान दें कि आइटम मापदंडों का वर्णमाला क्रम उनके व्यावहारिक या साइकोमेट्रिक महत्व से मेल नहीं खाता है; स्थान/कठिनाई () पैरामीटर स्पष्ट रूप से सबसे महत्वपूर्ण है क्योंकि यह तीनों मॉडलों में शामिल है। 1PL केवल उपयोग करता है , 2PL का उपयोग करता है और , 3PL जोड़ता है , और 4PL जोड़ता है .

2PL, 3PL मॉडल के बराबर है , और उन वस्तुओं के परीक्षण के लिए उपयुक्त है जहां सही उत्तर का अनुमान लगाना अत्यधिक असंभव है, जैसे कि रिक्त वस्तुओं को भरना (121 का वर्गमूल क्या है?), या जहां अनुमान लगाने की अवधारणा लागू नहीं होती है, जैसे व्यक्तित्व , रवैया, या रुचि वाले आइटम (उदाहरण के लिए, मुझे ब्रॉडवे संगीत पसंद है। सहमत/असहमत)।

1PL न केवल यह मानता है कि अनुमान लगाना मौजूद नहीं है (या अप्रासंगिक), बल्कि सभी आइटम भेदभाव के संदर्भ में समान हैं, सभी आइटमों के लिए समान लोडिंग के साथ सामान्य कारक विश्लेषण के अनुरूप। व्यक्तिगत वस्तुओं या व्यक्तियों में द्वितीयक कारक हो सकते हैं लेकिन इन्हें परस्पर स्वतंत्र और सामूहिक रूप से रूढ़िवादी माना जाता है।

लॉजिस्टिक और सामान्य आईआरटी मॉडल

वैकल्पिक सूत्रीकरण सामान्य संभाव्यता वितरण के आधार पर आईआरएफ का निर्माण करता है; इन्हें कभी-कभी सामान्य ऑगिव (सांख्यिकी) मॉडल कहा जाता है। उदाहरण के लिए, दो-पैरामीटर सामान्य-ओगिव आईआरएफ का सूत्र है:

जहां Φ मानक सामान्य वितरण का संचयी वितरण फ़ंक्शन (सीडीएफ) है।

नॉर्मल-ओगाइव मॉडल सामान्य रूप से वितरित माप त्रुटि की धारणा से निकला है और उस आधार पर सैद्धांतिक रूप से आकर्षक है। यहाँ फिर से, कठिनाई पैरामीटर है। भेदभाव पैरामीटर है , आइटम i के लिए माप त्रुटि का मानक विचलन, और 1/ के तुलनीय.

वस्तुओं के मध्य टेट्राकोरिक सहसंबंधों के मैट्रिक्स का कारक-विश्लेषण करके कोई सामान्य-ओगिव अव्यक्त विशेषता मॉडल का अनुमान लगा सकता है।[10] इसका मतलब यह है कि सामान्य प्रयोजन सांख्यिकीय सॉफ्टवेयर का उपयोग करके सरल आईआरटी मॉडल का अनुमान लगाना तकनीकी रूप से संभव है।

क्षमता पैरामीटर के पुनर्स्केलिंग के साथ, 2PL लॉजिस्टिक मॉडल को संचयी सामान्य तोरण के करीब लाना संभव है।[11] आमतौर पर, 2PL लॉजिस्टिक और नॉर्मल-ओगिव आईआरएफ की संभावना फ़ंक्शन की सीमा में 0.01 से अधिक नहीं होती है। हालाँकि, अंतर वितरण पूंछ में सबसे बड़ा है, जिसका परिणामों पर अधिक प्रभाव पड़ता है।

अव्यक्त विशेषता/आईआरटी मॉडल मूल रूप से सामान्य तोरण का उपयोग करके विकसित किया गया था, लेकिन उस समय (1960 के दशक) कंप्यूटरों के लिए इसे कम्प्यूटेशनल रूप से बहुत अधिक मांग वाला माना जाता था। लॉजिस्टिक मॉडल को सरल विकल्प के रूप में प्रस्तावित किया गया था, और तब से इसका व्यापक उपयोग हुआ है। हालाँकि, हाल ही में, यह प्रदर्शित किया गया कि, सामान्य सीडीएफ के लिए मानक बहुपद सन्निकटन का उपयोग करते हुए,[12] नॉर्मल-ओगिव मॉडल लॉजिस्टिक मॉडल की तुलना में अधिक कम्प्यूटेशनल रूप से मांग वाला नहीं है।[13]

तीव्र मॉडल

रैश मॉडल को अक्सर 1PL IRT मॉडल माना जाता है। हालाँकि, रैश मॉडलिंग के समर्थक इसे डेटा और सिद्धांत के मध्य संबंधों की अवधारणा के लिए पूरी तरह से अलग दृष्टिकोण के रूप में देखना पसंद करते हैं।[14] अन्य सांख्यिकीय मॉडलिंग दृष्टिकोणों की तरह, आईआरटी प्रेक्षित डेटा के लिए मॉडल के फिट होने की प्रधानता पर जोर देता है,[15] जबकि रैश मॉडल मौलिक माप के लिए आवश्यकताओं की प्रधानता पर जोर देता है, पर्याप्त डेटा-मॉडल फिट महत्वपूर्ण लेकिन माध्यमिक आवश्यकता है जिसे किसी परीक्षण या अनुसंधान उपकरण से पहले पूरा किया जाना चाहिए ताकि किसी विशेषता को मापने का दावा किया जा सके।[16] परिचालनात्मक रूप से, इसका मतलब यह है कि आईआरटी दृष्टिकोण में डेटा में देखे गए पैटर्न को प्रतिबिंबित करने के लिए अतिरिक्त मॉडल पैरामीटर शामिल हैं (उदाहरण के लिए, वस्तुओं को अव्यक्त विशेषता के साथ उनके सहसंबंध में भिन्नता की अनुमति देना), जबकि राश दृष्टिकोण में, अव्यक्त विशेषता की उपस्थिति के बारे में दावे केवल तभी वैध माना जा सकता है जब दोनों (ए) डेटा रैश मॉडल में फिट होते हैं, और (बी) परीक्षण आइटम और परीक्षार्थी मॉडल के अनुरूप होते हैं। इसलिए, रैश मॉडल के तहत, मिसफिटिंग प्रतिक्रियाओं के लिए मिसफिट के कारण के निदान की आवश्यकता होती है, और यदि कोई पर्याप्त रूप से समझा सकता है कि वे अव्यक्त विशेषता को संबोधित क्यों नहीं करते हैं, तो उन्हें डेटा सेट से बाहर रखा जा सकता है।[17] इस प्रकार, रश दृष्टिकोण को पुष्टिकरण दृष्टिकोण के रूप में देखा जा सकता है, जो खोजपूर्ण दृष्टिकोण के विपरीत है जो देखे गए डेटा को मॉडल करने का प्रयास करता है।

अनुमान लगाने या छद्म-मौका पैरामीटर की उपस्थिति या अनुपस्थिति प्रमुख और कभी-कभी विवादास्पद अंतर है। आईआरटी दृष्टिकोण में बहुविकल्पीय परीक्षाओं में अनुमान लगाने के लिए बायाँ स्पर्शोन्मुख पैरामीटर शामिल है, जबकि रैश मॉडल में ऐसा नहीं है क्योंकि यह माना जाता है कि अनुमान लगाने से डेटा में यादृच्छिक रूप से वितरित शोर जुड़ जाता है। चूँकि शोर को बेतरतीब ढंग से वितरित किया जाता है, यह माना जाता है कि, बशर्ते पर्याप्त वस्तुओं का परीक्षण किया जाए, कच्चे स्कोर द्वारा अव्यक्त विशेषता के साथ व्यक्तियों का रैंक-क्रम नहीं बदलेगा, बल्कि बस रैखिक पुनर्मूल्यांकन से गुजरना होगा। इसके विपरीत, तीन-पैरामीटर आईआरटी डेटा को फिट करने वाले मॉडल का चयन करके डेटा-मॉडल फिट प्राप्त करता है,[18] विशिष्ट वस्तुनिष्ठता का त्याग करने की कीमत पर।

व्यवहार में, आईआरटी दृष्टिकोण की तुलना में रैश मॉडल के कम से कम दो प्रमुख फायदे हैं। पहला लाभ रश की विशिष्ट आवश्यकताओं की प्रधानता है,[19] जो (मिलने पर) मौलिक व्यक्ति-मुक्त माप प्रदान करता है (जहां व्यक्तियों और वस्तुओं को ही अपरिवर्तनीय पैमाने पर मैप किया जा सकता है)।[20] रैश दृष्टिकोण का अन्य लाभ यह है कि पर्याप्त आँकड़ों की उपस्थिति के कारण रैश मॉडल में मापदंडों का अनुमान अधिक सरल है, जिसका अर्थ इस एप्लिकेशन में रैश के लिए कच्चे नंबर-सही स्कोर की -से- मैपिंग है। अनुमान।[21]

मॉडल फिट का विश्लेषण

गणितीय मॉडल के किसी भी उपयोग की तरह, मॉडल में डेटा के फिट होने का आकलन करना महत्वपूर्ण है। यदि किसी मॉडल के साथ आइटम मिसफिट का निदान खराब आइटम गुणवत्ता के कारण किया जाता है, उदाहरण के लिए बहुविकल्पीय परीक्षण में भ्रमित करने वाले ध्यान भटकाने वाले, तो आइटम को उस परीक्षण फॉर्म से हटा दिया जा सकता है और भविष्य के परीक्षण फॉर्म में फिर से लिखा या प्रतिस्थापित किया जा सकता है। यदि, हालांकि, मिसफिटिंग का कोई स्पष्ट कारण नहीं होने पर बड़ी संख्या में मिसफिटिंग आइटम होते हैं, तो परीक्षण की निर्माण वैधता पर पुनर्विचार करने की आवश्यकता होगी और परीक्षण विनिर्देशों को फिर से लिखने की आवश्यकता हो सकती है। इस प्रकार, मिसफ़िट परीक्षण डेवलपर्स के लिए अमूल्य नैदानिक ​​उपकरण प्रदान करता है, जिससे उन परिकल्पनाओं को डेटा के विरुद्ध अनुभवजन्य रूप से परीक्षण करने की अनुमति मिलती है जिन पर परीक्षण विनिर्देश आधारित होते हैं।

फिट का आकलन करने के लिए कई तरीके हैं, जैसे ची-स्क्वायर आँकड़ा, या इसका मानकीकृत संस्करण। दो और तीन-पैरामीटर आईआरटी मॉडल बेहतर डेटा-मॉडल फिट सुनिश्चित करते हुए आइटम भेदभाव को समायोजित करते हैं, इसलिए फिट आँकड़ों में -पैरामीटर मॉडल में पाए जाने वाले पुष्टिकरण निदान मूल्य का अभाव होता है, जहां आदर्श मॉडल पहले से निर्दिष्ट होता है।

डेटा को मॉडल के अनुपयुक्त होने के आधार पर नहीं हटाया जाना चाहिए, बल्कि इसलिए कि अनुपयुक्त होने का ठोस प्रासंगिक कारण का निदान किया गया है, जैसे कि अंग्रेजी का गैर-देशी वक्ता अंग्रेजी में लिखित विज्ञान परीक्षा दे रहा है। इस तरह के उम्मीदवार के बारे में तर्क दिया जा सकता है कि वह परीक्षण की आयामता के आधार पर व्यक्तियों की समान आबादी से संबंधित नहीं है, और, हालांकि पैरामीटर आईआरटी उपायों को नमूना-स्वतंत्र होने का तर्क दिया जाता है, वे आबादी से स्वतंत्र नहीं हैं, इसलिए यह अनुपयुक्त है निर्माण प्रासंगिक है और परीक्षण या मॉडल को अमान्य नहीं करता है। उपकरण सत्यापन में ऐसा दृष्टिकोण आवश्यक उपकरण है। दो और तीन-पैरामीटर मॉडल में, जहां साइकोमेट्रिक मॉडल को डेटा को फिट करने के लिए समायोजित किया जाता है, परीक्षण के भविष्य के प्रशासन को प्रारंभिक सत्यापन में उपयोग किए गए उसी मॉडल के लिए फिट होने के लिए जांचना चाहिए ताकि प्रत्येक प्रशासन से स्कोर को सामान्य बनाने वाली परिकल्पना की पुष्टि की जा सके। अन्य प्रशासनों के लिए. यदि डेटा-मॉडल फिट प्राप्त करने के लिए प्रत्येक प्रशासन के लिए अलग मॉडल निर्दिष्ट किया गया है, तो अलग अव्यक्त विशेषता को मापा जा रहा है और परीक्षण स्कोर को प्रशासनों के मध्य तुलनीय होने का तर्क नहीं दिया जा सकता है।

जानकारी

आइटम रिस्पांस थ्योरी का प्रमुख योगदान विश्वसनीयता (सांख्यिकी) की अवधारणा का विस्तार है। परंपरागत रूप से, विश्वसनीयता माप की सटीकता को संदर्भित करती है (यानी, वह डिग्री जिस तक माप त्रुटि मुक्त है)। परंपरागत रूप से, इसे विभिन्न तरीकों से परिभाषित ल सूचकांक का उपयोग करके मापा जाता है, जैसे कि सही और देखे गए स्कोर भिन्नता का अनुपात। यह सूचकांक किसी परीक्षण की औसत विश्वसनीयता को दर्शाने में सहायक है, उदाहरण के लिए दो परीक्षणों की तुलना करने के लिए। लेकिन आईआरटी यह स्पष्ट करता है कि परीक्षण स्कोर की संपूर्ण श्रृंखला में सटीकता समान नहीं है। उदाहरण के लिए, परीक्षण की सीमा के किनारों पर प्राप्त अंकों में आम तौर पर सीमा के मध्य के करीब के अंकों की तुलना में अधिक त्रुटियाँ जुड़ी होती हैं।

आइटम रिस्पांस थ्योरी विश्वसनीयता को बदलने के लिए आइटम और परीक्षण जानकारी की अवधारणा को आगे बढ़ाता है। सूचना भी मॉडल मापदंडों का कार्य है। उदाहरण के लिए, फिशर सूचना सिद्धांत के अनुसार, द्विभाजित प्रतिक्रिया डेटा के लिए 1PL के मामले में प्रदान की गई आइटम जानकारी केवल सही प्रतिक्रिया की संभावना को गलत प्रतिक्रिया की संभावना से गुणा करती है, या,

अनुमान की मानक त्रुटि (एसई) किसी दिए गए विशेषता स्तर पर परीक्षण जानकारी का पारस्परिक है, है

इस प्रकार अधिक जानकारी से माप में कम त्रुटि का पता चलता है।

अन्य मॉडलों के लिए, जैसे कि दो और तीन पैरामीटर मॉडल, भेदभाव पैरामीटर फ़ंक्शन में महत्वपूर्ण भूमिका निभाता है। दो पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है

तीन पैरामीटर मॉडल के लिए आइटम सूचना फ़ंक्शन है

[22]

सामान्य तौर पर, आइटम सूचना फ़ंक्शन घंटी के आकार के दिखते हैं। अत्यधिक विभेदकारी वस्तुओं में लंबे, संकीर्ण सूचना कार्य होते हैं; वे बहुत योगदान देते हैं लेकिन सीमित दायरे में। कम विभेदकारी आइटम कम जानकारी प्रदान करते हैं लेकिन व्यापक दायरे में।

आइटम जानकारी के प्लॉट का उपयोग यह देखने के लिए किया जा सकता है कि कोई आइटम कितनी जानकारी का योगदान देता है और स्केल स्कोर रेंज के किस हिस्से में योगदान देता है। स्थानीय स्वतंत्रता के कारण, आइटम सूचना फ़ंक्शन योगात्मक मानचित्र हैं। इस प्रकार, परीक्षण सूचना फ़ंक्शन केवल परीक्षा में आइटमों के सूचना कार्यों का योग है। बड़े आइटम बैंक के साथ इस संपत्ति का उपयोग करके, माप त्रुटि को बहुत सटीक रूप से नियंत्रित करने के लिए परीक्षण सूचना कार्यों को आकार दिया जा सकता है।

परीक्षण स्कोर की सटीकता की विशेषता शायद साइकोमेट्रिक सिद्धांत में केंद्रीय मुद्दा है और आईआरटी और सीटीटी के मध्य मुख्य अंतर है। आईआरटी के निष्कर्षों से पता चलता है कि विश्वसनीयता की सीटीटी अवधारणा सरलीकरण है। विश्वसनीयता के स्थान पर, आईआरटी परीक्षण सूचना फ़ंक्शन प्रदान करता है जो थीटा, θ के विभिन्न मूल्यों पर सटीकता की डिग्री दिखाता है।

ये परिणाम मनोचिकित्सकों को (संभावित रूप से) सावधानीपूर्वक चुनी गई वस्तुओं को शामिल करके क्षमता की विभिन्न श्रेणियों के लिए विश्वसनीयता के स्तर को सावधानीपूर्वक आकार देने की अनुमति देते हैं। उदाहरण के लिए, प्रमाणीकरण स्थिति में जहां परीक्षा केवल उत्तीर्ण या असफल हो सकती है, जहां केवल कटस्कोर होता है, और जहां वास्तविक उत्तीर्ण स्कोर महत्वहीन होता है, केवल उच्च जानकारी वाले आइटम का चयन करके बहुत ही कुशल परीक्षण विकसित किया जा सकता है कटस्कोर के पास. ये आइटम आम तौर पर उन आइटमों से मेल खाते हैं जिनकी कठिनाई कटस्कोर के समान ही होती है।

स्कोरिंग

व्यक्ति पैरामीटर व्यक्ति के अव्यक्त गुण के परिमाण को दर्शाता है, जो परीक्षण द्वारा मापी गई मानवीय क्षमता या विशेषता है।[23] यह संज्ञानात्मक क्षमता, शारीरिक क्षमता, कौशल, ज्ञान, दृष्टिकोण, व्यक्तित्व विशेषता आदि हो सकती है।

व्यक्ति पैरामीटर का अनुमान - आईआरटी के साथ परीक्षण पर स्कोर - संख्या या प्रतिशत सही जैसे पारंपरिक स्कोर की तुलना में बहुत अलग तरीके से गणना और व्याख्या की जाती है। व्यक्ति का कुल संख्या-सही स्कोर वास्तविक स्कोर नहीं है, बल्कि आईआरएफ पर आधारित है, जिससे मॉडल में आइटम भेदभाव पैरामीटर शामिल होने पर भारित स्कोर प्राप्त होता है। यह वास्तव में संभावना फ़ंक्शन प्राप्त करने के लिए प्रत्येक आइटम के लिए आइटम प्रतिक्रिया फ़ंक्शन को गुणा करके प्राप्त किया जाता है, जिसका उच्चतम बिंदु अधिकतम संभावना अनुमान है . इस उच्चतम बिंदु का अनुमान आमतौर पर न्यूटन-रैपसन पद्धति का उपयोग करके आईआरटी सॉफ्टवेयर से लगाया जाता है।[24] जबकि आईआरटी के साथ स्कोरिंग बहुत अधिक परिष्कृत है, अधिकांश परीक्षणों के लिए, थीटा अनुमान और पारंपरिक स्कोर के मध्य संबंध बहुत अधिक है; अक्सर यह 0.95 या इससे अधिक होता है। पारंपरिक स्कोर के मुकाबले आईआरटी स्कोर का ग्राफ तोरण आकार दिखाता है जिसका अर्थ है कि आईआरटी मध्य की तुलना में सीमा की सीमाओं पर भिन्न-भिन्न व्यक्तियों का अनुमान लगाता है।

सीटीटी और आईआरटी के मध्य महत्वपूर्ण अंतर माप त्रुटि का उपचार है, जिसे माप की मानक त्रुटि द्वारा अनुक्रमित किया जाता है। सभी परीक्षण, प्रश्नावली और सूचीएं सटीक उपकरण नहीं हैं; हम कभी भी किसी व्यक्ति का वास्तविक स्कोर नहीं जान सकते, बल्कि केवल अनुमान रखते हैं, देखा गया स्कोर। कुछ मात्रा में यादृच्छिक त्रुटि है जो देखे गए स्कोर को वास्तविक स्कोर से अधिक या कम कर सकती है। सीटीटी मानता है कि प्रत्येक परीक्षार्थी के लिए त्रुटि की मात्रा समान है, लेकिन आईआरटी इसे भिन्न-भिन्न करने की अनुमति देता है।[25] इसके अलावा, आईआरटी के बारे में कुछ भी मानव विकास या सुधार का खंडन नहीं करता है या यह मानता है कि गुण स्तर निश्चित है। व्यक्ति कौशल, ज्ञान या यहां तक ​​कि तथाकथित परीक्षण लेने के कौशल सीख सकता है जो उच्च वास्तविक-स्कोर में तब्दील हो सकता है। वास्तव में, आईआरटी अनुसंधान का हिस्सा विशेषता स्तर में परिवर्तन के मापन पर केंद्रित है।[26]

शास्त्रीय और आइटम रिस्पांस थ्योरीों की तुलना

शास्त्रीय परीक्षण सिद्धांत (सीटीटी) और आईआरटी काफी हद तक समान समस्याओं से संबंधित हैं, लेकिन सिद्धांत के भिन्न-भिन्न निकाय हैं और भिन्न-भिन्न तरीकों की आवश्यकता है। हालाँकि दोनों प्रतिमान आम तौर पर सुसंगत और पूरक हैं, फिर भी कई बिंदुओं में अंतर है:

  • आईआरटी सीटीटी की तुलना में अधिक मजबूत धारणाएं बनाता है और कई मामलों में तदनुसार मजबूत निष्कर्ष प्रदान करता है; प्राथमिक रूप से, त्रुटि के लक्षण। बेशक, ये परिणाम तभी मान्य होते हैं जब आईआरटी मॉडल की धारणाएं वास्तव में पूरी होती हैं।
  • हालांकि सीटीटी परिणामों ने महत्वपूर्ण व्यावहारिक परिणामों की अनुमति दी है, आईआरटी की मॉडल-आधारित प्रकृति अनुरूप सीटीटी निष्कर्षों पर कई फायदे प्रदान करती है।
  • सीटीटी परीक्षण स्कोरिंग प्रक्रियाओं का लाभ यह है कि गणना करना (और समझाना) आसान है, जबकि आईआरटी स्कोरिंग के लिए आम तौर पर अपेक्षाकृत जटिल अनुमान प्रक्रियाओं की आवश्यकता होती है।
  • आईआरटी वस्तुओं और लोगों को स्केल करने में कई सुधार प्रदान करता है। विशिष्टताएं आईआरटी मॉडल पर निर्भर करती हैं, लेकिन अधिकांश मॉडल वस्तुओं की कठिनाई और लोगों की क्षमता को ही मीट्रिक पर मापते हैं। इस प्रकार किसी वस्तु की कठिनाई और व्यक्ति की क्षमता की सार्थक तुलना की जा सकती है।
  • आईआरटी द्वारा प्रदान किया गया और सुधार यह है कि आईआरटी मॉडल के पैरामीटर आम तौर पर नमूना- या परीक्षण-निर्भर नहीं होते हैं जबकि ट्रू-स्कोर को विशिष्ट परीक्षण के संदर्भ में सीटीटी में परिभाषित किया जाता है। इस प्रकार आईआरटी उन स्थितियों में काफी अधिक लचीलापन प्रदान करता है जहां विभिन्न नमूनों या परीक्षण रूपों का उपयोग किया जाता है। ये आईआरटी निष्कर्ष कम्प्यूटरीकृत अनुकूली परीक्षण के लिए मूलभूत हैं।

सीटीटी और आईआरटी के मध्य कुछ विशिष्ट समानताओं का उल्लेख करना भी उचित है जो अवधारणाओं के मध्य पत्राचार को समझने में मदद करते हैं। सबसे पहले, भगवान[27] इस धारणा के तहत दिखाया गया है कि सामान्य रूप से वितरित किया जाता है, 2PL मॉडल में भेदभाव लगभग बिंदु-द्विक्रमिक सहसंबंध गुणांक का मोनोटोनिक फ़ंक्शन है। विशेष रूप से:

कहाँ आइटम i का बिंदु द्विक्रमिक सहसंबंध है। इस प्रकार, यदि धारणा सही है, तो जहां अधिक भेदभाव है वहां आम तौर पर उच्च बिंदु-द्विक्रमिक सहसंबंध होगा।

और समानता यह है कि जबकि आईआरटी प्रत्येक अनुमान और सूचना फ़ंक्शन की मानक त्रुटि प्रदान करता है, समग्र रूप से परीक्षण के लिए सूचकांक प्राप्त करना भी संभव है जो सीधे क्रोनबैक के अल्फा के अनुरूप है, जिसे पृथक्करण सूचकांक कहा जाता है। ऐसा करने के लिए, किसी आईआरटी अनुमान को सही स्थान और त्रुटि में विघटित करना शुरू करना आवश्यक है, जो किसी देखे गए स्कोर के वास्तविक स्कोर और सीटीटी में त्रुटि के अपघटन के समान है। होने देना

कहाँ सही स्थान है, और अनुमान के साथ त्रुटि संबद्धता है। तब के मानक विचलन का अनुमान है किसी दिए गए भारित स्कोर वाले व्यक्ति के लिए और पृथक्करण सूचकांक निम्नानुसार प्राप्त किया जाता है

जहां व्यक्ति अनुमान की माध्य वर्ग मानक त्रुटि त्रुटियों के विचरण का अनुमान देती है, , व्यक्तियों के पार। मानक त्रुटियाँ आम तौर पर अनुमान प्रक्रिया के उप-उत्पाद के रूप में उत्पन्न होती हैं। पृथक्करण सूचकांक आमतौर पर क्रोनबैक के अल्फा के मूल्य के बहुत करीब है।[28] आईआरटी को कभी-कभी मजबूत सच्चा स्कोर सिद्धांत या आधुनिक मानसिक परीक्षण सिद्धांत कहा जाता है क्योंकि यह सिद्धांत का नवीनतम निकाय है और सीटीटी के भीतर निहित परिकल्पनाओं को और अधिक स्पष्ट करता है।

यह भी देखें

संदर्भ

  1. "महत्वपूर्ण मूल्यांकन और मापन शर्तों की शब्दावली". National Council on Measurement in Education. Archived from the original on 2017-07-22.
  2. A. van Alphen, R. Halfens, A. Hasman and T. Imbos. (1994). Likert or Rasch? Nothing is more applicable than good theory. Journal of Advanced Nursing. 20, 196-201
  3. Embretson, Susan E.; Reise, Steven P. (2000). मनोवैज्ञानिकों के लिए आइटम रिस्पांस थ्योरी. Psychology Press. ISBN 9780805828191.
  4. ETS Research Overview
  5. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of Item Response Theory. Newbury Park, CA: Sage Press.
  6. Bock, R.D.; Aitkin, M. (1981). "Marginal maximum likelihood estimation of item parameters: application of an EM algorithm". Psychometrika. 46 (4): 443–459. doi:10.1007/BF02293801. S2CID 122123206.
  7. Ostini, Remo; Nering, Michael L. (2005). पॉलीटोमस आइटम रिस्पांस थ्योरी मॉडल. Quantitative Applications in the Social Sciences. Vol. 144. SAGE. ISBN 978-0-7619-3068-6.
  8. Nering, Michael L.; Ostini, Remo, eds. (2010). पॉलीटोमस आइटम प्रतिक्रिया सिद्धांत मॉडल की हैंडबुक. Taylor & Francis. ISBN 978-0-8058-5992-8.
  9. Thissen, D. & Orlando, M. (2001). Item response theory for items scored in two categories. In D. Thissen & Wainer, H. (Eds.), Test Scoring (pp. 73–140). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  10. K. G. Jöreskog and D. Sörbom(1988). PRELIS 1 user's manual, version 1. Chicago: Scientific Software, Inc.
  11. Camilli, Gregory (1994). "Origin of the Scaling Constant d = 1.7 in Item Response Theory". Journal of Educational and Behavioral Statistics. 19 (3): 293–295. doi:10.3102/10769986019003293. S2CID 122401679.
  12. Abramowitz M., Stegun I.A. (1972). Handbook of Mathematical Functions. Washington DC: U. S. Government Printing Office.
  13. Uebersax, J.S. (December 1999). "Probit latent class analysis with dichotomous or ordered category measures: conditional independence/dependence models". Applied Psychological Measurement. 23 (4): 283–297. doi:10.1177/01466219922031400. S2CID 120497324.
  14. Andrich, D (1989), Distinctions between assumptions and requirements in measurement in the Social sciences", in Keats, J.A, Taft, R., Heath, R.A, Lovibond, S (Eds), Mathematical and Theoretical Systems, Elsevier Science Publishers, North Holland, Amsterdam, pp.7-16.
  15. Steinberg, J. (2000). Frederic Lord, Who Devised Testing Yardstick, Dies at 87. New York Times, February 10, 2000
  16. Andrich, D. (January 2004). "Controversy and the Rasch model: a characteristic of incompatible paradigms?". Medical Care. 42 (1): I–7. doi:10.1097/01.mlr.0000103528.48582.7c. PMID 14707751. S2CID 23087904.
  17. Smith, R.M. (1990). "फिट का सिद्धांत और अभ्यास". Rasch Measurement Transactions. 3 (4): 78.
  18. Zwick, R.; Thayer, D.T.; Wingersky, M. (December 1995). "कंप्यूटर-अनुकूली परीक्षणों में क्षमता और डीआईएफ अनुमान पर रश अंशांकन का प्रभाव". Journal of Educational Measurement. 32 (4): 341–363. doi:10.1111/j.1745-3984.1995.tb00471.x.
  19. Rasch, G. (1960/1980). Probabilistic models for some intelligence and attainment tests. (Copenhagen, Danish Institute for Educational Research), expanded edition (1980) with foreword and afterword by B.D. Wright. Chicago: The University of Chicago Press.
  20. Wright, B.D. (1992). "IRT in the 1990s: Which Models Work Best?". Rasch Measurement Transactions. 6 (1): 196–200.
  21. Fischer, G.H. & Molenaar, I.W. (1995). Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer.
  22. de Ayala, R.J. (2009). The Theory and Practice of Item Response Theory, New York, NY: The Guilford Press. (6.12), p.144
  23. Lazarsfeld P.F, & Henry N.W. (1968). Latent Structure Analysis. Boston: Houghton Mifflin.
  24. Thompson, N.A. (2009). "आईआरटी के साथ क्षमता का आकलन" (PDF).
  25. Kolen, Michael J.; Zeng, Lingjia; Hanson, Bradley A. (June 1996). "आईआरटी का उपयोग करके स्केल स्कोर के लिए माप की सशर्त मानक त्रुटियां". Journal of Educational Measurement. 33 (2): 129–140. doi:10.1111/j.1745-3984.1996.tb00485.x.
  26. Hall, L.A., & McDonald, J.L. (2000). Measuring Change in Teachers' Perceptions of the Impact that Staff Development Has on Teaching. Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 24–28, 2000).
  27. Lord, F.M. (1980). Applications of item response theory to practical testing problems. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  28. Andrich, D. (1982). "An index of person separation in latent trait theory, the traditional KR.20 index, and the Guttman scale response pattern". Education Research and Perspectives. 9: 95–104.


अग्रिम पठन

Many books have been written that address item response theory or contain IRT or IRT-like models. This is a partial list, focusing on texts that provide more depth.

  • Lord, F.M. (1980). Applications of item response theory to practical testing problems. Mahwah, NJ: Erlbaum.
This book summaries much of Lord's IRT work, including chapters on the relationship between IRT and classical methods, fundamentals of IRT, estimation, and several advanced topics. Its estimation chapter is now dated in that it primarily discusses joint maximum likelihood method rather than the marginal maximum likelihood method implemented by Darrell Bock and his colleagues.
This book is an accessible introduction to IRT, aimed, as the title says, at psychologists.
  • Baker, Frank (2001). The Basics of Item Response Theory. ERIC Clearinghouse on Assessment and Evaluation, University of Maryland, College Park, MD.
This introductory book is by one of the pioneers in the field, and is available online at [1]
This book describes various item response theory models and furnishes detailed explanations of algorithms that can be used to estimate the item and ability parameters. Portions of the book are available online as limited preview at Google Books.
This book provides a comprehensive overview regarding various popular IRT models. It is well suited for persons who already have gained basic understanding of IRT.
This volume shows an integrated introduction to item response models, mainly aimed at practitioners, researchers and graduate students.
This book discusses the Bayesian approach towards item response modeling. The book will be useful for persons (who are familiar with IRT) with an interest in analyzing item response data from a Bayesian perspective.


बाहरी संबंध