श्रृंखला नियम

From Vigyanwiki
Revision as of 21:20, 20 November 2022 by alpha>Arnavsingh

गणना में, श्रृंखला नियम एक सूत्र है जो f और g के डेरिवेटिव के संदर्भ में दो अलग-अलग फलनf और g की संरचना के व्युत्पन्न को व्यक्त करता है. यदि समारोह ऐसा है कि तो x के लिए, लैग्रेंज के अंकन में श्रृंखला नियम है:

या, समकक्ष:

श्रृंखला नियम को लाइबनिज के अंकन में भी व्यक्त किया जा सकता है। यदि एक चर z, चर y पर निर्भर करता है, जो स्वयं चर x पर निर्भर करता है (अर्थात, y और z आश्रित चर हैं), तो z मध्यवर्ती चर y के माध्यम से x पर भी निर्भर करता है. इस मामले में, श्रृंखला नियम के रूप में व्यक्त किया गया है

तथा

यह इंगित करने के लिए कि किन बिंदुओं पर डेरिवेटिव का मूल्यांकन किया जाना है।

अभिन्न में, श्रृंखला नियम का समकक्ष प्रतिस्थापन नियम है।

सहज व्याख्या

सहज रूप से, श्रृंखला नियम कहता है कि y के सापेक्ष z के परिवर्तन की तात्कालिक दर और x के सापेक्ष y के परिवर्तन की तात्कालिक दर को जानने से व्यक्ति को परिवर्तन की दो दरों के उत्पाद के रूप में x के सापेक्ष z के परिवर्तन की तात्कालिक दर की गणना करने की अनुमति मिलती है।

जैसा कि जॉर्ज एफ. सीमन्स ने कहा है: "यदि एक कार साइकिल से दोगुनी गति से चलती है और साइकिल चलने वाले व्यक्ति की गति से चार गुना तेज है, तो कार व्यक्ति की गति से 2 × 4 = 8 गुना गति से चलती है" [1] उदाहरण और श्रृंखला नियम के बीच का संबंध इस प्रकार है। z, y तथा x क्रमशः कार, साइकिल और चलने वाले आदमी की (चर) स्थितियाँ हैं। कार और साइकिल की आपेक्षिक स्थिति में परिवर्तन की दर है इसी प्रकार, तो, कार और चलने वाले आदमी की सापेक्ष स्थिति में परिवर्तन की दर है:

स्थिति परिवर्तन की दर गति का अनुपात है, और गति समय के संबंध में स्थिति का व्युत्पन्न है;

या, समकक्ष,

जो श्रृंखला नियम का भी एक अनुप्रयोग है।

इतिहास

ऐसा प्रतीत होता है कि श्रृंखला नियम का प्रयोग सबसे पहले गॉटफ्राइड विल्हेम लिबनिज़ो ने किया था। उन्होंने इसका उपयोग व्युत्पन्न की गणना वर्गमूल फलन और फलन के संयोजन के रूप में के लिए किया. उन्होंने पहली बार इसका उल्लेख 1676 के संस्मरण (गणना में एक सांकेतिक त्रुटि के साथ) में किया था। श्रृंखला नियम का सामान्य संकेतन लाइबनिज के कारण है।[2] गुइलौमे डे ल'हॉपिटल ने अपने अतिसूक्ष्म जीवों के विश्लेषण में निहित रूप से श्रृंखला नियम का इस्तेमाल किया। लियोनहार्ड यूलर की किसी भी विश्लेषण पुस्तक में श्रृंखला नियम प्रकट नहीं होता है, भले ही वे लीबनिज की खोज के सौ साल बाद लिखे गए हों।[citation needed]

कथन

श्रृंखला नियम का सबसे सरल रूप एक वास्तविक संख्या चर के वास्तविक-मूल्यवान फलनके लिए है। इसमें कहा गया है कि यदि g एक ऐसा फलन है जो एक बिंदु c पर अवकलनीय है (अर्थात् व्युत्पन्न g′(c) मौजूद है) और f एक ऐसा फलन है जो g(c) पर अवकलनीय है, तो संयुक्त फलन c पर अवकलनीय है, और व्युत्पन्न है:[3]

नियम को कभी-कभी संक्षिप्त किया जाता है

यदि y = f(u) तथा u = g(x), तो यह संक्षिप्त रूप लाइबनिज़ संकेतन में इस प्रकार लिखा जाता है :

जिन बिंदुओं पर डेरिवेटिव का मूल्यांकन किया जाता है, उन्हें भी स्पष्ट रूप से बताया जा सकता है:

उसी तर्क को आगे बढ़ाते हुए, दिए गए n फलन समग्र फलन के साथ , यदि प्रत्येक समारोह इसके तत्काल इनपुट पर अवकलनीय है, तो मिश्रित फलनभी चेन नियम के बार-बार आवेदन से भिन्न होता है, जहां व्युत्पन्न है (लीबनिज़ के संकेतन में):

अनुप्रयोग

दो से अधिक फलनके सम्मिश्रण

शृंखला नियम दो से अधिक फलनके संयोजनों पर लागू किया जा सकता है। दो से अधिक फलनके सम्मिश्र का व्युत्पन्न लेने के लिए, ध्यान दें कि f, g, और h का सम्मिश्र (उसी क्रम में) gh के साथ f का सम्मिश्र है. श्रृंखला नियम बताता है कि: fgh के अवकलज की गणना करने के लिए, f के अवकलज और gh के अवकलज की गणना करना पर्याप्त है। f के व्युत्पन्न की गणना सीधे की जा सकती है, और जीएच के व्युत्पन्न की गणना श्रृंखला नियम को फिर से लागू करके की जा सकती है।

संक्षिप्तता के लिए, फलनपर विचार करें

इसे तीन फलनके सम्मिश्र के रूप में विघटित किया जा सकता है:

उनके डेरिवेटिव हैं:

श्रृंखला नियम बताता है कि बिंदु (x = a) पर उनके संमिश्र का व्युत्पन्न है:

लाइबनिज के संकेतन में, यह है:

या संक्षेप में,

व्युत्पन्न फलन इसलिए है:

इस अवकलज की गणना करने का दूसरा तरीका संयुक्त फलन fgh को fg और h के सम्मिश्र के रूप में देखना है। श्रृंखला नियम को इस तरीके से लागू करने से प्राप्त होगा:

यह वही है जो ऊपर गणना की गई थी। इसकी अपेक्षा की जानी चाहिए क्योंकि (fg) ∘ h = f ∘ (gh).

कभी-कभी, फॉर्म की मनमाने ढंग से लंबी संरचना को अलग करना आवश्यक होता है . इस मामले में, परिभाषित करें

जहां पे तथा जब . तब श्रृंखला नियम रूप लेता है

या, लैग्रेंज संकेतन में,

भागफल नियम

कुछ प्रसिद्ध विभेदन नियमों को प्राप्त करने के लिए श्रृंखला नियम का उपयोग किया जा सकता है। उदाहरण के लिए, भागफल नियम श्रृंखला नियम और उत्पाद नियम का परिणाम है। इसे देखने के लिए, फलन f ( x )/ g ( x ) को गुणनफल f ( x ) · 1/ g ( x ) के रूप में लिखें. पहले उत्पाद नियम लागू करें:

1/ g ( x ) के अवकलज की गणना करने के लिए, ध्यान दें कि यह व्युत्क्रम फलन के साथ g का सम्मिश्र है, अर्थात, वह फलन जो x को 1/ x पर भेजता है. पारस्परिक फलन का व्युत्पन्न है . श्रृंखला नियम लागू करने पर, अंतिम व्यंजक बन जाता है:

जो भागफल नियम का सामान्य सूत्र है।

व्युत्क्रम फलन के डेरिवेटिव्स

मान लीजिए कि y = g(x) एक व्युत्क्रम फलन है। इसके व्युत्क्रम फलन f को कॉल करें ताकि हमारे पास हो x = f(y) हो. g के व्युत्पन्न के संदर्भ में f के व्युत्पन्न के लिए एक सूत्र है. इसे देखने के लिए ध्यान दें कि f तथा g सूत्र को संतुष्ट करते हैं

और क्योंकि फलन और x समान हैं, उनके डेरिवेटिव समान होने चाहिए। x का व्युत्पन्न मान 1 के साथ स्थिर फलन है, और इसका व्युत्पन्न है श्रृंखला नियम द्वारा निर्धारित किया जाता है। इसलिए, हमारे पास है:

f' को एक स्वतंत्र चर y के फलन के रूप में व्यक्त करने के लिए, जहां भी x दिखाई देता है हम प्रतिस्थापित करते हैं। तब हम f' के लिए हल कर सकते हैं

उदाहरण के लिए, फलन g(x) = ex पर विचार करें. इसका व्युत्क्रम है f(y) = ln y है. चूँकि g ′( x ) = e x, उपरोक्त सूत्र कहता है:

यह सूत्र तब सत्य होता है जब g अवकलनीय होता है और इसका व्युत्क्रम f भी अवकलनीय होता है। यह सूत्र तब विफल हो सकता है जब इनमें से कोई एक स्थिति सत्य न हो। उदाहरण के लिए g(x) = x3 पर विचार करें. इसका व्युत्क्रम f(y) = y1/3 है, जो शून्य पर अवकलनीय नहीं है। यदि हम शून्य पर f के व्युत्पन्न की गणना करने के लिए उपरोक्त सूत्र का उपयोग करने का प्रयास करते हैं, तो हमें 1/g′(f(0)) का मूल्यांकन करना चाहिए. चूँकि f(0) = 0 तथा g′(0) = 0, हमें 1/0 का मूल्यांकन करना चाहिए, जो अपरिभाषित है। इसलिए, इस मामले में सूत्र विफल हो जाता। यह आश्चर्यजनक नहीं है क्योंकि f शून्य पर अवकलनीय नहीं है।

उच्चतर डेरिवेटिव

फा डी ब्रूनो का सूत्र श्रृंखला नियम को उच्च डेरिवेटिव के लिए सामान्यीकृत करता है। यह मानते हुए कि y = f(u) तथा u = g(x), तो पहले कुछ डेरिवेटिव हैं:

प्रमाण

पहला प्रमाण

श्रृंखला नियम का एक प्रमाण समग्र फलन fg के व्युत्पन्न को परिभाषित करने से शुरू होता है, जहां हम fg के लिए अंतर भागफल की सीमा लेते हैं, जब x a की ओर अग्रसर होता है :

फिलहाल के लिए मान लीजिए बराबर नही हैं किसी के लिए x पास a. फिर पिछली अभिव्यक्ति दो कारकों के उत्पाद के बराबर है:

यदि a के निकट दोलन करता है, तो ऐसा हो सकता है कि कोई व्यक्ति a के कितने भी करीब क्यों न हो , हमेशा एक और x भी करीब होता है जैसे g ( x ) = g ( a ) . उदाहरण के लिए, यह x = 0 और g ( x ) = x 2 sin(1/ x ) के लिए g ( x ) = 0 द्वारा परिभाषित निरंतर फलन g के लिए a = 0 के निकट होता है। अन्यथा, जब भी ऐसा होता है, उपरोक्त व्यंजक अपरिभाषित होता है क्योंकि इसमें शून्य से विभाजन करना शामिल होता है।

हम दिखाएंगे कि fg के लिए अंतर भागफल हमेशा बराबर होता है:

जब भी g ( x ) g ( a ) के बराबर नहीं होता है , यह स्पष्ट होता है क्योंकि g ( x ) − g ( a ) के कारक रद्द हो जाते हैं। जब g ( x ) g ( a ) के बराबर होता है, तो fg के लिए अंतर भागफल शून्य होता है क्योंकि f ( g ( x )) f ( g ( a ) ) के बराबर होता है, और उपरोक्त गुणनफल शून्य है क्योंकि यह f ′( g ( a )) गुणा शून्य के बराबर है। इसलिए उपरोक्त उत्पाद हमेशा अंतर भागफल के बराबर होता है, और यह दिखाने के लिए कि a पर fg का व्युत्पन्न मौजूद है और इसके मूल्य को निर्धारित करने के लिए, हमें केवल यह दिखाने की आवश्यकता है कि x के रूप में उपरोक्त उत्पाद की सीमा मौजूद है और यह इसका मूल्य निर्धारित करती है।

ऐसा करने के लिए, याद रखें कि किसी उत्पाद की सीमा मौजूद है यदि उसके कारकों की सीमाएं मौजूद हैं। जब ऐसा होता है, तो इन दो कारकों के उत्पाद की सीमा कारकों की सीमाओं के उत्पाद के बराबर होगी। दो कारक हैं Q(g(x)) तथा (g(x) − g(a)) / (xa). उत्तरार्द्ध के लिए अंतर भागफल है g पर a, और क्योंकि g पर भिन्न है a धारणा से, इसकी सीमा के रूप में x आदत है a मौजूद है और बराबर है g′(a).

से संबंधित Q(g(x)), नोटिस जो Q कहीं भी परिभाषित किया गया हैfहै। आगे,fपर भिन्न है g(a) धारणा से, इसलिए Q निरंतर है g(a), व्युत्पन्न की परिभाषा के द्वारा। कार्यक्रम g निरंतर है a क्योंकि यह पर अवकलनीय है a, और इसीलिए Qg निरंतर है a. तो इसकी सीमा के रूप मेंxजाता हैaमौजूद है और बराबर है Q(g(a)), जो है f′(g(a)).

इससे पता चलता है कि दोनों कारकों की सीमाएं मौजूद हैं और वे बराबर हैं f′(g(a)) तथा g′(a), क्रमश। इसलिए, का व्युत्पन्न fg a पर मौजूद है और बराबर है f′(g(a))g′(a).

दूसरा प्रमाण

श्रृंखला नियम को सिद्ध करने का एक अन्य तरीका व्युत्पन्न द्वारा निर्धारित रैखिक सन्निकटन में त्रुटि को मापना है। इस प्रमाण का यह लाभ है कि यह कई चरों का सामान्यीकरण करता है। यह एक बिंदु पर अवकलनीयता की निम्नलिखित समतुल्य परिभाषा पर निर्भर करता है: एक फलनg एक पर अवकलनीय है यदि वास्तविक संख्या g′(a) मौजूद है और एक फलनε(h) जो शून्य की ओर जाता है क्योंकि h शून्य की ओर जाता है, और इसके अलावा

यहाँ बाईं ओर a और at पर g के मान के बीच सही अंतर का प्रतिनिधित्व करता है a + h, जबकि दाहिनी ओर डेरिवेटिव और एक त्रुटि शब्द द्वारा निर्धारित सन्निकटन का प्रतिनिधित्व करता है।

श्रृंखला नियम की स्थिति में, ऐसा फलन ε अस्तित्व में है क्योंकि g को a पर अवकलनीय माना जाता है। पुन: पूर्वधारणा के अनुसार, g(a) पर f के लिए एक समान फलन भी विद्यमान होता है। इस फलनको कॉल करने पर, हमारे पास है

उपरोक्त परिभाषा η (0) पर कोई बाधा नहीं डालती है, भले ही यह माना जाता है कि η (के) शून्य हो जाता है क्योंकि के शून्य हो जाता है। यदि हम सेट करते हैं η(0) = 0, तो η 0 पर सतत है।

प्रमेय को साबित करने के लिए अंतर का अध्ययन करना आवश्यक है f(g(a + h)) − f(g(a)) जैसे h शून्य हो जाता है। स्थानापन्न करने के लिए पहला कदम है g(a + h) a पर g की अवकलनीयता की परिभाषा का उपयोग करते हुए:

अगला चरण g(a) पर f की अवकलनीयता की परिभाषा का उपयोग करना है। इसके लिए फॉर्म की अवधि की आवश्यकता है f(g(a) + k) कुछ कश्मीर के लिए उपरोक्त समीकरण में, सही k h के साथ बदलता रहता है। समूह kh = g′(a) h + ε(h) h और दाहिनी ओर बन जाता है f(g(a) + kh) − f(g(a)). व्युत्पन्न की परिभाषा को लागू करना:

इस व्यंजक के व्यवहार का अध्ययन करने के लिए जब h शून्य की ओर जाता है, k का विस्तार करेंh. शर्तों को पुनर्समूहित करने के बाद, दाहिनी ओर बन जाता है:

क्योंकि (h) और η(k .)h) शून्य की ओर जाता है क्योंकि h शून्य की ओर जाता है, पहले दो ब्रैकेटेड शब्द शून्य की ओर जाते हैं जैसे h शून्य की ओर जाता है। सीमाओं के गुणनफल पर उसी प्रमेय को लागू करने पर जैसा कि पहले प्रमाण में है, तीसरे कोष्ठक वाले पद में भी शून्य की प्रवृत्ति होती है। क्योंकि उपरोक्त अभिव्यक्ति अंतर के बराबर है f(g(a + h)) − f(g(a)), व्युत्पन्न की परिभाषा के द्वारा fg पर अवकलनीय है और इसका व्युत्पन्न है f′(g(a)) g′(a). पहले प्रमाण में Q की भूमिका इस प्रमाण में द्वारा निभाई जाती है। वे समीकरण से संबंधित हैं:

जी (ए) पर क्यू को परिभाषित करने की आवश्यकता शून्य पर η को परिभाषित करने की आवश्यकता के अनुरूप है।

तीसरा प्रमाण

कॉन्स्टेंटिन कैराथोडोरी की एक फलनकी भिन्नता की वैकल्पिक परिभाषा का उपयोग श्रृंखला नियम का एक सुंदर प्रमाण देने के लिए किया जा सकता है।[4] इस परिभाषा के तहत, एक समारोह f एक बिंदु पर अवकलनीय है a यदि और केवल यदि कोई फलनहै q, पर निरंतर a और ऐसा है f(x) − f(a) = q(x)(xa). ऐसा अधिकतम एक फलन है, और यदि f पर भिन्न है a फिर f ′(a) = q(a). श्रृंखला नियम की मान्यताओं और इस तथ्य को देखते हुए कि अवकलनीय फलन और निरंतर फलनकी संरचना निरंतर है, हमारे पास यह है कि फलन मौजूद हैं q, पर निरंतर g(a), तथा r, पर निरंतर a, और ऐसा कि,

तथा

इसलिए,

लेकिन द्वारा दिया गया फलन h(x) = q(g(x))r(x) निरंतर है a, और हम प्राप्त करते हैं, इसके लिए a

एक समान दृष्टिकोण कई चरों के निरंतर भिन्न (वेक्टर-) फलनके लिए काम करता है। फैक्टरिंग की यह विधि भिन्नता के मजबूत रूपों के लिए एक एकीकृत दृष्टिकोण की भी अनुमति देती है, जब व्युत्पन्न लिप्सचिट्ज़ निरंतरता, होल्डर स्थिति|होल्डर निरंतर, आदि होना आवश्यक है। भेदभाव को स्वयं बहुपद शेष प्रमेय के रूप में देखा जा सकता है (छोटा एटिएन बेज़ाउट|बेज़ाउट प्रमेय, या कारक प्रमेय), फलनके उपयुक्त वर्ग के लिए सामान्यीकृत।[citation needed]

अत्यल्प मात्राओं के माध्यम से प्रमाण

यदि तथा फिर अनंत को चुनना हम इसी की गणना करते हैं और फिर संबंधित , ताकि

और हमारे द्वारा प्राप्त मानक भाग को लागू करना

जो चेन नियम है।

बहुविकल्पीय मामला

बहु-चर फलनके लिए श्रृंखला नियम का सामान्यीकरण बल्कि तकनीकी है। हालांकि, फॉर्म के फलनके मामले में लिखना आसान है

चूंकि यह मामला अक्सर एक चर के फलनके अध्ययन में होता है, इसलिए इसे अलग से वर्णन करना उचित है।

का मामला f(g1(x), ... , gk(x))

फॉर्म के फंक्शन के लिए चेन रूल लिखने के लिए

f(g1(x), ... , gk(x)),

के आंशिक डेरिवेटिव की जरूरत है f इसके संबंध में k तर्क। आंशिक डेरिवेटिव के लिए सामान्य अंकन में फलनके तर्कों के लिए नाम शामिल होते हैं। चूंकि उपरोक्त सूत्र में इन तर्कों का नाम नहीं दिया गया है, इसलिए इसे निरूपित करना सरल और स्पष्ट है

का आंशिक व्युत्पन्न f इसके संबंध में iवें तर्क, और द्वारा

इस व्युत्पन्न का मूल्य पर z.

इस अंकन के साथ, श्रृंखला नियम है

उदाहरण: अंकगणितीय संक्रियाएँ

यदि समारोह f अतिरिक्त है, अर्थात्, यदि

फिर तथा . इस प्रकार, श्रृंखला नियम देता है

गुणन के लिए

आंशिक हैं तथा . इस प्रकार,

घातांक का मामला

थोड़ा और जटिल है, जैसे

और जैसे

यह इस प्रकार है कि

सामान्य नियम

सामान्य स्थिति में श्रृंखला नियम लिखने का सबसे सरल तरीका कुल व्युत्पन्न # कुल व्युत्पन्न का उपयोग एक रैखिक मानचित्र के रूप में करना है, जो एक रैखिक परिवर्तन है जो सभी दिशात्मक डेरिवेटिव को एक सूत्र में कैप्चर करता है। अलग-अलग फलनपर विचार करें f : RmRk तथा g : RnRm, और एक बिंदु a में Rn. होने देना Da g के कुल व्युत्पन्न को निरूपित करें g पर a तथा Dg(a) f के कुल व्युत्पन्न को निरूपित करें f पर g(a). ये दो व्युत्पन्न रैखिक परिवर्तन हैं RnRm तथा RmRk, क्रमशः, इसलिए उनकी रचना की जा सकती है। कुल डेरिवेटिव के लिए श्रृंखला नियम यह है कि उनका सम्मिश्र का कुल डेरिवेटिव है fg पर a:

या संक्षेप में,

ऊपर दिए गए दूसरे प्रमाण के समान तकनीक का उपयोग करके उच्च-आयामी श्रृंखला नियम को सिद्ध किया जा सकता है।[5] यह मामला और पिछला मामला बनच के कई गुना एक साथ सामान्यीकरण को स्वीकार करता है।

विभेदक बीजगणित में, व्युत्पन्न की व्याख्या काहलर अवकलन के मॉड्यूल के आकारिकी के रूप में की जाती है। विनिमेय वलयों का एक वलय समरूपता f : RS काहलर विभेदकों के आकारिकी को निर्धारित करता है Df : ΩR → ΩS जो डी (एफ (आर)) को एक तत्व डॉ भेजता है, एफ (आर) के बाहरी अंतर। सूत्र D(fg) = DfDg इस संदर्भ में भी रखता है।

इन उदाहरणों की सामान्य विशेषता यह है कि वे इस विचार की अभिव्यक्ति हैं कि व्युत्पन्न एक फ़ैक्टर का हिस्सा है। एक फ़ैक्टर रिक्त स्थान पर एक ऑपरेशन है और उनके बीच फलन करता है। यह प्रत्येक स्थान को एक नई जगह से जोड़ता है और प्रत्येक फलनको दो रिक्त स्थान के बीच संबंधित नई जगहों के बीच एक नया फलनजोड़ता है। उपरोक्त प्रत्येक मामले में, ऑपरेटर प्रत्येक स्थान को उसके स्पर्शरेखा बंडल में भेजता है और यह प्रत्येक फलनको उसके डेरिवेटिव में भेजता है। उदाहरण के लिए, कई गुना मामले में, व्युत्पन्न सी भेजता हैr-C से कई गुनाr−1-कई गुना (इसकी स्पर्शरेखा बंडल) और एक सीr-इसके कुल डेरिवेटिव के लिए फलन करता है। इसके लिए एक फ़ंक्टर होने की एक आवश्यकता है, अर्थात् एक सम्मिश्र का व्युत्पन्न डेरिवेटिव का सम्मिश्र होना चाहिए। ठीक यही सूत्र है D(fg) = DfDg.

स्टोकेस्टिक कलन में चेन रूल्स भी होते हैं। इनमें से एक, इटो लेम्मा, एक इटो प्रक्रिया (या अधिक आम तौर पर एक सेमीमार्टिंगलेस) डीएक्स के सम्मिश्रण को व्यक्त करता हैt दो बार अवकलनीय फलन के साथ f. Itō's lemma में, समग्र फलन का अवकलज न केवल dX . पर निर्भर करता हैt और f का व्युत्पन्न लेकिन f के दूसरे व्युत्पन्न पर भी। दूसरे व्युत्पन्न पर निर्भरता स्टोकेस्टिक प्रक्रिया के गैर-शून्य द्विघात भिन्नता का परिणाम है, जिसका मोटे तौर पर मतलब है कि प्रक्रिया बहुत मोटे तरीके से ऊपर और नीचे जा सकती है। श्रृंखला नियम का यह प्रकार एक फ़ैक्टर का उदाहरण नहीं है क्योंकि दो फलनकी रचना अलग-अलग प्रकार की होती है।

यह भी देखें

संदर्भ

  1. George F. Simmons, Calculus with Analytic Geometry (1985), p. 93.
  2. Rodríguez, Omar Hernández; López Fernández, Jorge M. (2010). "चेन रूल के डिडक्टिक्स पर एक लाक्षणिक प्रतिबिंब". The Mathematics Enthusiast. 7 (2): 321–332. doi:10.54870/1551-3440.1191. S2CID 29739148. Retrieved 2019-08-04.
  3. Apostol, Tom (1974). गणितीय विश्लेषण (2nd ed.). Addison Wesley. Theorem 5.5.
  4. Kuhn, Stephen (1991). "कैराथियोडोरी का व्युत्पन्न". The American Mathematical Monthly. 98 (1): 40–44. doi:10.2307/2324035. JSTOR 2324035.
  5. Spivak, Michael (1965). Calculus on Manifolds. Boston: Addison-Wesley. pp. 19–20. ISBN 0-8053-9021-9.</रेफरी> चूंकि कुल व्युत्पन्न एक रैखिक परिवर्तन है, सूत्र में प्रदर्शित होने वाले कार्यों को मैट्रिक्स के रूप में फिर से लिखा जा सकता है। कुल व्युत्पन्न के अनुरूप मैट्रिक्स को जैकबियन मैट्रिक्स कहा जाता है, और दो डेरिवेटिव का संयोजन उनके जैकोबियन मैट्रिक्स के उत्पाद से मेल खाता है। इस दृष्टिकोण से श्रृंखला नियम इसलिए कहता है:
    या संक्षेप में,
    अर्थात्, संयुक्त फलन का जैकोबियन, रचित कार्यों के जैकोबियन का गुणनफल होता है (उपयुक्त बिंदुओं पर मूल्यांकन किया जाता है)। उच्च-आयामी श्रृंखला नियम एक-आयामी श्रृंखला नियम का सामान्यीकरण है। यदि k, m, और n 1 हैं, तो f : RR तथा g : RR, फिर f और g के जैकोबियन मैट्रिसेस हैं 1 × 1. विशेष रूप से, वे हैं:
    f g का जैकबियन इन का गुणनफल है 1 × 1 मैट्रिक्स, तो यह है f′(g(a))⋅g′(a), जैसा कि एक आयामी श्रृंखला नियम से अपेक्षित है। रैखिक परिवर्तनों की भाषा में, डीa(g) वह फलन है जो सदिश को g′(a) और D . के गुणनखंड से मापता हैg(a)(एफ) वह कार्य है जो एफ' (जी (ए)) के कारक द्वारा वेक्टर को स्केल करता है। श्रृंखला नियम कहता है कि इन दो रैखिक परिवर्तनों का सम्मिश्रण रैखिक परिवर्तन है Da(fg), और इसलिए यह फ़ंक्शन है जो वेक्टर को f′(g(a))⋅g′(a) द्वारा स्केल करता है। श्रृंखला नियम लिखने का एक अन्य तरीका तब उपयोग किया जाता है जब f और g को उनके घटकों के रूप में व्यक्त किया जाता है y = f(u) = (f1(u), …, fk(u)) तथा u = g(x) = (g1(x), …, gm(x)). इस मामले में, जैकोबियन मैट्रिसेस के लिए उपरोक्त नियम आमतौर पर इस प्रकार लिखा जाता है:
    कुल डेरिवेटिव के लिए चेन नियम आंशिक डेरिवेटिव के लिए चेन नियम का तात्पर्य है। याद रखें कि जब कुल व्युत्पन्न मौजूद होता है, तो iवें समन्वय दिशा में आंशिक व्युत्पन्न जैकबियन मैट्रिक्स को iवें आधार वेक्टर से गुणा करके पाया जाता है। उपरोक्त सूत्र के साथ ऐसा करने पर, हम पाते हैं:
    चूँकि जेकोबियन मैट्रिक्स की प्रविष्टियाँ आंशिक डेरिवेटिव हैं, हम प्राप्त करने के लिए उपरोक्त सूत्र को सरल बना सकते हैं:
    अधिक अवधारणात्मक रूप से, यह नियम इस तथ्य को व्यक्त करता है कि x . में परिवर्तनi दिशा बदल सकती है सभी जी1 जी के माध्यम सेm, और इनमें से कोई भी परिवर्तन f को प्रभावित कर सकता है। विशेष मामले में जहां k = 1, ताकि f एक वास्तविक-मूल्यवान कार्य हो, तो यह सूत्र और भी सरल हो जाता है:
    इसे डॉट उत्पाद के रूप में फिर से लिखा जा सकता है। याद है कि u = (g1, …, gm), आंशिक व्युत्पन्न u / ∂xi एक सदिश भी है, और श्रृंखला नियम कहता है कि:

    उदाहरण

    दिया गया u(x, y) = x2 + 2y कहाँ पे x(r, t) = r sin(t) तथा y(r,t) = sin2(t), का मान निर्धारित करें u / ∂r तथा u / ∂t श्रृंखला नियम का उपयोग करना।

    तथा

    बहुपरिवर्तनीय कार्यों के उच्च डेरिवेटिव

    एकल-चर कार्यों के उच्च-क्रम डेरिवेटिव के लिए Faà di Bruno का सूत्र बहु-परिवर्तनीय मामले को सामान्यीकृत करता है। यदि y = f(u) का एक कार्य है u = g(x) ऊपर के रूप में, फिर का दूसरा व्युत्पन्न fg है:

    आगे सामान्यीकरण

    कलन के सभी विस्तारों में एक श्रृंखला नियम होता है। इनमें से अधिकांश में, सूत्र वही रहता है, हालाँकि उस सूत्र का अर्थ बहुत भिन्न हो सकता है।

    एक सामान्यीकरण कई गुना है। इस स्थिति में, श्रृंखला नियम इस तथ्य का प्रतिनिधित्व करता है कि का व्युत्पन्न fg f के व्युत्पन्न और g के व्युत्पन्न का सम्मिश्र है। यह प्रमेय ऊपर दिए गए उच्च आयामी श्रृंखला नियम का एक तात्कालिक परिणाम है, और इसका बिल्कुल वही सूत्र है।

    बानाच रिक्त स्थान में फ्रेचेट डेरिवेटिव के लिए श्रृंखला नियम भी मान्य है। वही फार्मूला पहले जैसा है।<ref>Cheney, Ward (2001). "The Chain Rule and Mean Value Theorems". अनुप्रयुक्त गणित के लिए विश्लेषण. New York: Springer. pp. 121–125. ISBN 0-387-95279-9.


बाहरी संबंध