दृढ़ता (साउंडनेस)

From Vigyanwiki
Revision as of 09:30, 13 June 2023 by Manidh (talk | contribs)

तर्क में या अधिक सटीक रूप से, निगमनात्मक तर्क, एक ध्वनि है यदि यह रूप में मान्य है और इसके परिसर सत्य हैं।[1] ध्वनि का गणितीय तर्क में भी एक संबंधित अर्थ है, जिसमें तार्किक प्रणालियां ध्वनि होती हैं यदि और केवल तभी जब प्रणाली में सिद्ध किया जा सकने वाला प्रत्येक सूत्र प्रणाली के शब्दार्थ के संबंध में तार्किक रूप से मान्य हो।

परिभाषा

निगमनात्मक तर्क में, एक ध्वनि तर्क है जो मान्य है और इसके सभी परिसर सत्य हैं (और परिणामस्वरूप इसका निष्कर्ष भी सत्य है)। एक तर्क मान्य है यदि, इसके परिसरों को सत्य मानते हुए, निष्कर्ष सत्य होना चाहिए। निम्नलिखित सुप्रसिद्ध न्यायवाक्य एक ध्वनि तर्क का एक उदाहरण है:

(परिसर): सभी पुरुष नश्वर हैं।
सुकरात एक आदमी है।
(निष्कर्ष): इसलिए, सुकरात नश्वर है।

निष्कर्ष की तार्किक आवश्यकता के कारण, यह तर्क मान्य है; और इसके परिसर सत्य हैं, तर्क ध्वनि है।

हालाँकि, एक तर्क ध्वनि के बिना मान्य हो सकता है। उदाहरण के लिए:

सभी पक्षी उड़ सकते हैं।
पेंगुइन पक्षी हैं।
इसलिए पेंगुइन उड़ सकते हैं।

यह तर्क मान्य है क्योंकि परिसर को सत्य मानते हुए निष्कर्ष सत्य होना चाहिए। हालाँकि, पहला आधार असत्य है। सभी पक्षी उड़ नहीं सकते (उदाहरण के लिए, पेंगुइन)। एक तर्क के ध्वनि होने के लिए, तर्क को मान्य होना चाहिए और इसका परिसर सही होना चाहिए।[2]


गणितीय तर्क में प्रयोग करें

तार्किक प्रणाली

गणितीय तर्क में, एक तार्किक प्रणाली में ध्वनि गुण होता है यदि प्रणाली में सिद्ध किया जा सकने वाला प्रत्येक सूत्र प्रणाली के शब्दार्थ के संबंध में तार्किक रूप से मान्य हो।

अधिकतम स्थिति में, यह सत्य को संरक्षित करने की संपत्ति वाले अपने नियमों के लिए नीचे आता है।[3] सुदृढ़ता के विलोम को पूर्णता के रूप में जाना जाता है।

किसी भी क्रम के लिए वाक्यात्मक घटाव और शब्दार्थ विज्ञानम घटाव के साथ एक तार्किक प्रणाली ध्वनि है वाक्य का (गणितीय तर्क) अपनी भाषा में, यदि , तब . दूसरे शब्दों में, एक प्रणाली तब ध्वनि होती है जब उसके सभी प्रमेय पुनरुत्पादन होते हैं।

सुदृढ़ता गणितीय तर्क के सबसे मूलभूत गुणों में से एक है। सुदृढ़ता गुण तार्किक प्रणाली को वांछनीय मानने के लिए प्रारंभिक कारण प्रदान करता है। पूर्णता (तर्क) गुण का अर्थ है कि प्रत्येक वैधता (सत्य) साध्य है। साथ में वे कहते हैं कि सभी और केवल वैधताएं ही सिद्ध होती हैं।

सुदृढ़ता के अधिकतम प्रमाण साधारण हैं।[citation needed] उदाहरण के लिए, एक स्वयंसिद्ध प्रणाली में, ध्वनि का प्रमाण स्वयंसिद्धों की वैधता की पुष्टि करने के बराबर है और अनुमान के नियम वैधता (या कमजोर संपत्ति, सत्य) को संरक्षित करते हैं। यदि प्रणाली हिल्बर्ट-शैली निगमनात्मक प्रणाली की अनुमति देती है, तो उसे केवल स्वयंसिद्धों की वैधता और अनुमान के एक नियम, अर्थात् विधानात्मक हेतुफलानुमान की पुष्टि करने की आवश्यकता होती है।(और कभी-कभी प्रतिस्थापन)

ध्वनि गुण दो मुख्य परिवर्तन में आते हैं: कमजोर और मजबूत सुदृढ़ता, जिनमें से पूर्व उत्तरार्द्ध का प्रतिबंधित रूप है।

सुदृढ़ता

एक निगमनात्मक प्रणाली की सुदृढ़ता वह संपत्ति है जो उस निगमनात्मक प्रणाली में सिद्ध होने वाला कोई भी वाक्य उस भाषा के लिए शब्दार्थगत सिद्धांत की सभी व्याख्याओं या संरचनाओं पर भी सत्य है जिस पर वह सिद्धांत आधारित है। प्रतीकों में, जहाँ S निगमनात्मक प्रणाली है, L भाषा अपने शब्दार्थगत सिद्धांत के साथ है, और P L का एक वाक्य है: यदि ⊢Sपी, फिर भी ⊨Lपी।

मजबूत सुदृढ़ता

निगमनात्मक प्रणाली की मजबूत सुदृढ़ता यह गुण है कि भाषा का कोई भी वाक्य P जिस पर निगमनात्मक प्रणाली आधारित है जो उस भाषा के वाक्यों के निर्धारित Γ से व्युत्पन्न है, उस निर्धारित का एक तार्किक परिणाम भी है, इस अर्थ में कि कोई भी मॉडल जो Γ के सभी सदस्यों को सत्य बनाता है वह P को भी सत्य बना देगा। प्रतीकों में जहां Γ एल के वाक्यों का एक निर्धारित है: यदि Γ ⊢S P, फिर भी Γ ⊨L P। ध्यान दें कि मजबूत ध्वनि के वर्णन में, जब Γ रिक्त होता है, हमारे पास कमजोर ध्वनि का वर्णन होता है।

अंकगणितीय सुदृढ़ता

यदि T एक सिद्धांत है जिसके प्रवचन की वस्तुओं को प्राकृतिक संख्याओं के रूप में व्याख्या किया जा सकता है, तो हम कहते हैं कि T अंकगणितीय रूप से ध्वनि है यदि T के सभी प्रमेय वास्तव में मानक गणितीय पूर्णांकों के बारे में सत्य हैं। अधिक जानकारी के लिए, ω-सुसंगत सिद्धांत देखें।

पूर्णता से संबंध

सुदृढ़ता गुण का विलोम शब्दार्थगत पूर्णता (तर्क) गुण है। शब्दार्थगत सिद्धांत के साथ एक निगमनात्मक प्रणाली दृढ़ता से पूर्ण होता है यदि प्रत्येक वाक्य P जो कि वाक्यों के एक निर्धारित का शब्दार्थगत परिणाम है, उस निर्धारित से कटौती प्रणाली में प्राप्त किया जा सकता है। प्रतीकों में: जब भी Γ P, तब भी Γ P. पहले क्रम के तर्क की पूर्णता पहले गोडेल द्वारा स्पष्ट रूप से स्थापित की गई थी, हालांकि कुछ मुख्य परिणाम स्कोलेम के पहले के काम में निहित थे।

अनौपचारिक रूप से, एक कटौतीत्मक प्रणाली के लिए एक ध्वनि प्रमेय व्यक्त करता है कि सभी सिद्ध वाक्य सत्य हैं। पूर्णता बताती है कि सभी सत्य वाक्य सिद्ध होते हैं।

गोडेल की पहली अपूर्णता प्रमेय से पता चलता है कि एक निश्चित मात्रा में अंकगणित करने के लिए पर्याप्त भाषाओं के लिए, उस भाषा के प्रतीकवाद की इच्छित व्याख्या के संबंध में कोई सुसंगत और प्रभावी निगमनात्मक प्रणाली नहीं हो सकती है। इस प्रकार, संपूर्णता के इस महत्त्वपूर्ण अर्थ में सभी ध्वनि निगमनात्मक प्रणालियां पूर्ण नहीं हैं, जिसमें मॉडल का वर्ग (समरूपता तक) अभीष्ट एक तक ही सीमित है। मूल पूर्णता प्रमाण सभी शास्त्रीय मॉडलों पर लागू होता है, न कि इच्छित लोगों के कुछ महत्त्वपूर्ण उचित उपवर्गों पर।

यह भी देखें

संदर्भ

  1. Smith, Peter (2010). "सबूत प्रणाली के प्रकार" (PDF). p. 5.
  2. Gensler, Harry J., 1945- (January 6, 2017). तर्क का परिचय (Third ed.). New York. ISBN 978-1-138-91058-4. OCLC 957680480.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)
  3. Mindus, Patricia (2009-09-18). A Real Mind: The Life and Work of Axel Hägerström (in English). Springer Science & Business Media. ISBN 978-90-481-2895-2.


ग्रन्थसूची

  • Hinman, P. (2005). Fundamentals of Mathematical Logic. A K Peters. ISBN 1-56881-262-0.
  • Copi, Irving (1979), Symbolic Logic (5th ed.), Macmillan Publishing Co., ISBN 0-02-324880-7
  • Boolos, Burgess, Jeffrey. Computability and Logic, 4th Ed, Cambridge, 2002.


बाहरी संबंध