समानता (गणित)

From Vigyanwiki
Revision as of 09:40, 26 December 2022 by Admin (talk | contribs)

गणित में, समानता दो मात्राओं या अधिक सामान्य रूप से दो गणितीय अभिव्यक्तियों के बीच एक संबंध है,जिसका आशय है कि मात्राओं का एक ही मान है, या अभिव्यक्तियाँ एक ही गणितीय वस्तु का प्रतिनिधित्व करती हैं। A और B के बीच समानता को A = B लिखा है , और A का उच्चारण B के बराबर होता है।.[1] प्रतीक "=" को "बराबर चिह्न" कहा जाता है। दो वस्तुएँ जो समान नहीं हैं, भिन्न कहलाती हैं.

उदाहरण के लिए:

  • का अर्थ है, कि x और y एक ही वस्तु को दर्शाते हैं।।[2]
  • पहचान (गणित) इसका तात्पर्य है कि यदि x कोई संख्या है, तो दोनों व्यंजकों का मान समान है। इसे यह कहते हुए भी समझा जा सकता है कि बराबर चिह्न के दो पक्ष एक ही कार्य (गणित) का प्रतिनिधित्व करते हैं।
  • और केवल अगर यह अभिकथन, जो समूह निर्माता नोटेशन का उपयोग करता है, का अर्थ है कि यदि तत्व संपत्ति को संतुष्ट करते हैं को संतुष्ट करने वाले तत्वों के समान हैं तो समूह निर्माता नोटेशन के दो उपयोग एक ही समूह को परिभाषित करते हैं। इस संपत्ति को सामान्यतः दो समूहों के रूप में व्यक्त किया जाता है जिनमें समान तत्व होते हैं। यह समुच्चय सिद्धांत के सामान्य स्वयंसिद्धों में से एक है, जिसे विस्तार का स्वयंसिद्ध कहा जाता है।[3]


व्युत्पत्ति

शब्द की व्युत्पत्ति लैटिन भाषा के एक्वालिस ("समान", "समान", "तुलनीय", "समान") से हुई है, जो एसेस ("समान", "स्तर", "निष्पक्ष", "न्यायसंगत") से है।

मूल गुण

ये अंतिम तीन गुण समानता को एक तुल्यता संबंध बनाते हैं। वे मूल रूप से प्राकृतिक संख्याओं के लिए पीआनो स्वयंसिद्धों में सम्मलित थे। चूँकि सममित और सकर्मक गुणों को सामान्यतः मौलिक के रूप में देखा जाता है, उन्हें प्रतिस्थापन और प्रतिवर्ती गुणों से घटाया जा सकता है।

विधेय के रूप में समानता

जब A और B पूरी तरह से निर्दिष्ट नहीं होते हैं या कुछ चर (गणित) पर निर्भर होते हैं, तो समानता एक प्रस्ताव (गणित) है, जो कुछ मूल्यों के लिए सही हो सकता है और अन्य मूल्यों के लिए गलत हो सकता है। समानता एक द्विआधारी संबंध है (एक दो-तर्क विधेय (गणितीय तर्क)) जो अपने तर्कों से एक सत्य मान (गलत या सत्य) उत्पन्न कर सकता है। कंप्यूटर प्रोग्रामिंग में, दो भावों से इसकी गणना को संबंधपरक संकारक के रूप में जाना जाता है।

पहचान

जब A और B को कुछ चरों के फलन (गणित) के रूप में देखा जा सकता है, तब A = B का अर्थ है कि A और B एक ही फलन को परिभाषित करते हैं। कार्यों की ऐसी समानता को कभी-कभी एक तत्समक

(पहचान गणित) कहा जाता है। एक उदाहरण है कभी-कभी, लेकिन हमेशा नहीं, एक ट्रिपल बार के साथ एक पहचान लिखी जाती है:


समीकरण

एक समीकरण कुछ चरों के मान ज्ञात करने की समस्या है, जिसे अज्ञात कहा जाता है जिसके लिए निर्दिष्ट समानता सत्य है। शब्द समीकरण भी एक समानता संबंध को संदर्भित कर सकता है जो केवल उन चरों के मूल्यों के लिए संतुष्ट होता है जिनमें रुचि होती है। उदाहरण के लिए, इकाई घेरा समीकरण का है।

कोई मानक संकेतन नहीं है जो एक समीकरण को एक पहचान से भिन्न करता है, या समानता संबंध के अन्य उपयोग: किसी को अभिव्यक्ति के शब्दार्थ और संदर्भ से एक उपयुक्त व्याख्या का अनुमान लगाना पड़ता है। किसी दिए गए डोमेन में चर के सभी मूल्यों के लिए एक पहचान को सही माना जाता है। एक "समीकरण" का अर्थ कभी-कभी एक पहचान हो सकता है, लेकिन अधिक बार नहीं, यह चर स्थान के एक उपसमुच्चय के रूप में निर्दिष्ट करता है जहां समीकरण सत्य है।

अनुमानित समानता

कुछ गणितीय तर्क ऐसे हैं जिनमें समानता की कोई धारणा नहीं है। यह दो वास्तविक संख्याओं की समानता की अनिर्णीत समस्या को दर्शाता है, जो पूर्णांकों, मूल अंकगणितीय संक्रियाओं, लघुगणक और घातीय फलन से जुड़े सूत्रों द्वारा परिभाषित है। दूसरे शब्दों में, ऐसी समानता तय करने के लिए कोई कलन विधि सम्मलित नहीं हो सकती है ।

द्विआधारी संबंध सन्निकटन (प्रतीक द्वारा निरूपित ) वास्तविक संख्याओं या अन्य चीजों के बीच, भले ही अधिक त्रुटिहीन रूप से परिभाषित हो, सकर्मक नहीं है (चूंकि कई छोटे अंतर (गणित) कुछ बड़ा जोड़ सकते हैं)। चूँकि , समानता लगभग हर जगह सकर्मक है।

परीक्षण के अंतर्गत एक संदिग्ध समानता को ≟ प्रतीक का उपयोग करके निरूपित किया जा सकता है।

तुल्यता, सर्वांगसमता और समरूपता से संबंध

एक संबंध के रूप में देखा गया, समानता एक समुच्चय पर तुल्यता संबंध की अधिक सामान्य अवधारणा का मूलरूप है: वे द्विआधारी संबंध जो प्रतिवर्त संबंध, सममित संबंध और सकर्मक संबंध हैं। पहचान संबंध एक तुल्यता संबंध है। विलोमतः, मान लीजिए कि R एक तुल्यता संबंध है, और आइए हम x के तुल्यता वर्ग को xR से निरूपित करें, जिसमें सभी अवयव z ऐसे हैं कि x R z है। तब संबंध x R y समता xR = yR के तुल्य है। यह इस प्रकार है कि समानता किसी भी समुच्चय S पर इस अर्थ में सबसे अच्छा तुल्यता संबंध है कि यह ऐसा संबंध है जिसमें सबसे छोटा तुल्यता वर्ग है (प्रत्येक वर्ग को एक तत्व में घटाया जाता है)।

कुछ संदर्भों में, समानता को तुल्यता संबंध या तुल्याकारिता से स्पष्ट रूप से भिन्न किया जाता है।[5] उदाहरण के लिए, कोई परिमेय संख्याओं से से भिन्नों को अलग कर सकता है, बाद वाला अंशों का तुल्यता वर्ग है: भिन्न तथा के रूप में भिन्न हैं (प्रतीकों के विभिन्न तार के रूप में) लेकिन वे एक ही परिमेय संख्या (संख्या रेखा पर एक ही बिंदु) का प्रतिनिधित्व करते हैं। यह भेद भागफल समुच्चय की धारणा को जन्म देता है।

इसी प्रकार समूह

तथा

समान समूह नहीं हैं - पहले में अक्षर होते हैं, जबकि दूसरे में संख्याएँ होती हैं - लेकिन वे दोनों तीन तत्वों के समूह हैं और इस प्रकार आइसोमॉर्फिक हैं, जिसका अर्थ है कि उनके बीच एक आक्षेप है। उदाहरण के लिए

चूँकि, समरूपता के अन्य विकल्प हैं, जैसे

और इन समूहों को इस प्रकार के विकल्प के बिना पहचाना नहीं जा सकता है - कोई भी विवरण जो उन्हें पहचानता है पहचान की पसंद पर निर्भर करता है। यह अंतर, समरूपता समानता के साथ संबंध, श्रेणी सिद्धांत में मूलभूत महत्व का है और श्रेणी सिद्धांत के विकास के लिए एक प्रेरणा है।

कुछ स्थिति में, एक समान दो गणितीय वस्तुओं के रूप में विचार किया जा सकता है जो केवल गुणों और संरचना के लिए समकक्ष हैं। शब्द सर्वांगसमता संबंध (और संबंधित प्रतीक ) इस प्रकार की समानता के लिए सामान्यतः उपयोग किया जाता है, और इसे वस्तुओं के बीच समरूपता वर्गों के भागफल समूह के रूप में परिभाषित किया जाता है। उदाहरण के लिए, ज्यामिति में, दो ज्यामितीय आकृतियों को सर्वांगसमता (ज्यामिति) कहा जाता है, जब एक को दूसरे के साथ मेल खाने के लिए ले जाया जा सकता है, और समानता/सर्वांगसमता संबंध आकृतियों के बीच समरूपता का समरूपता वर्ग है। समूह के समरूपता के समान, गुणों और संरचना के साथ ऐसी गणितीय वस्तुओं के बीच समरूपता और समानता/अनुरूपता के बीच का अंतर श्रेणी सिद्धांत के विकास के साथ-साथ होमोटोपी प्रकार के सिद्धांत और असमान नींव के लिए एक प्रेरणा थी।

तार्किक परिभाषाएँ

लाइबनिट्स ने समानता की धारणा को इस प्रकार बताया:

किसी भी x और y को देखते हुए, x = y यदि केवल , कोई विधेय (गणित) P, P(x) और P(y) दिया गया हो।

सेट सिद्धांत में समानता

समूह सिद्धांत में समूह की समानता को दो भिन्न -भिन्न उपायों से अभिगृहीत किया जाता है, यह इस बात पर निर्भर करता है कि क्या स्वयंसिद्ध पहले-क्रम की भाषा पर समानता के साथ या बिना आधारित हैं।

समानता के साथ प्रथम-क्रम तर्क के आधार पर समानता समूह करें समानता के साथ पहले क्रम के तर्क में, विस्तार का स्वयंसिद्ध बताता है कि दो समूह जिनमें समान तत्व होते हैं, वही समूह होते हैं।[6]

  • तर्क सिद्धांत: x = y ⇒ ∀z, (z ∈ x ⇔ z ∈ y)
  • तर्क सिद्धांत: x = y ⇒ ∀z, (x ∈ z ⇔ y ∈ z)
  • सिद्धांत सिद्धांत समूह करें: (∀z, (z ∈ x ⇔ z ∈ y)) ⇒ x = y

पहले क्रम के तर्क में आधे काम को सम्मिलित करना केवल सुविधा का विषय माना जा सकता है, जैसा कि लेवी ने टिप्पणी की है।

हम प्रथम-क्रम विधेय कलन को समानता के साथ क्यों लेते हैं इसका कारण सुविधा का विषय है; इसके द्वारा हम समानता को परिभाषित करने और उसके सभी गुणों को सिद्ध करने के श्रम को बचाते हैं; यह बोझ अब तर्क द्वारा ग्रहण किया जाता है।[7]


समानता के बिना प्रथम-क्रम तर्क के आधार पर समानता समूह करें

समानता के बिना पहले क्रम के तर्क में, दो समूहों को बराबर परिभाषित किया जाता है यदि उनमें समान तत्व होते हैं। तब विस्तार की अभिधारणा बताती है कि दो समान समुच्चय एक ही समुच्चय में समाहित हैं।[8]

  • समुच्चय सिद्धांत परिभाषा: x = y का अर्थ है ∀z, (z ∈ x ⇔ z ∈ y)
  • समुच्चय सिद्धांत स्वयंसिद्ध: x = y ⇒ ∀z, (x ∈ z ⇔ y ∈ z)

यह भी देखें

टिप्पणियाँ

  1. Weisstein, Eric W. "समानता". mathworld.wolfram.com (in English). Retrieved 1 September 2020.
  2. Rosser 2008, p. 163.
  3. Lévy 2002, pp. 13, 358. Mac Lane & Birkhoff 1999, p. 2. Mendelson 1964, p. 5.
  4. Weisstein, Eric W. "Equal". mathworld.wolfram.com (in English). Retrieved 1 September 2020.
  5. (Mazur 2007)
  6. Kleene 2002, p. 189. Lévy 2002, p. 13. Shoenfield 2001, p. 239.
  7. Lévy 2002, p. 4.
  8. Mendelson 1964, pp. 159–161. Rosser 2008, pp. 211–213


संदर्भ


बाहरी संबंध