अनबिबियम

From Vigyanwiki
Unbibium, 122Ubb
Unbibium
उच्चारण/ˌnbˈbəm/ (OON-by-BY-əm)
Alternative nameselement 122, eka-thorium
Unbibium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ununennium Unbinilium
Unquadtrium Unquadquadium Unquadpentium Unquadhexium Unquadseptium Unquadoctium Unquadennium Unpentnilium Unpentunium Unpentbium Unpenttrium Unpentquadium Unpentpentium Unpenthexium Unpentseptium Unpentoctium Unpentennium Unhexnilium Unhexunium Unhexbium Unhextrium Unhexquadium Unhexpentium Unhexhexium Unhexseptium Unhexoctium Unhexennium Unseptnilium Unseptunium Unseptbium
Unbiunium Unbibium Unbitrium Unbiquadium Unbipentium Unbihexium Unbiseptium Unbioctium Unbiennium Untrinilium Untriunium Untribium Untritrium Untriquadium Untripentium Untrihexium Untriseptium Untrioctium Untriennium Unquadnilium Unquadunium Unquadbium


Ubb

unbiuniumunbibiumunbitrium
Atomic number (Z)122
समूहgroup n/a
अवधिperiod 8
ब्लॉक  g-block
ऋणावेशित सूक्ष्म अणु का विन्यासpredictions vary, see text
भौतिक गुण
Phase at STPunknown
परमाणु गुण
ऑक्सीकरण राज्य(+4) (predicted)[1]
Ionization energies
  • 1st: 545 (predicted)[2] kJ/mol
  • 2nd: 1090 (predicted)[2] kJ/mol
  • 3rd: 1848 (predicted) kJ/mol
अन्य गुण
CAS नंबर54576-73-7
History
नामीIUPAC systematic element name
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
| references

अनबिबियम, जिसे तत्व 122 या ईका-थोरियम के रूप में भी जाना जाता है, आवर्त सारणी में Ubb के प्लेसहोल्डर प्रतीक और परमाणु संख्या 122 के साथ काल्पनिक रासायनिक तत्व है। अनबिबियम और Ubb क्रमशः अस्थायी व्यवस्थित आईयूपीएसी नाम और प्रतीक हैं, जिनका उपयोग तत्व के शोध पुष्टि और स्थायी नाम तय होने तक किया जाता है। तत्वों की आवर्त सारणी में, सुपरएक्टिनाइड्स के दूसरे तत्व और 8वें आवर्त के चौथे तत्व के रूप में अनबिनियम का अनुसरण करने की अपेक्षा है। यूनिनियम के समान, यह स्थिरता के द्वीप की सीमा के अंदर आने की अपेक्षा है, जो संभावित रूप से कुछ समस्थानिकों पर अतिरिक्त स्थिरता प्रदान करता है, विशेष रूप से 306Ubb जिसमें न्यूट्रॉन की आकर्षण संख्या (184) होने की अपेक्षा है।

कई प्रयासों के अतिरिक्त, अनबिबियम को अभी तक संश्लेषित नहीं किया गया है, न ही कोई प्राकृतिक रूप से पाए जाने वाले समस्थानिक पाए गए हैं। अनबिबियम को संश्लेषित करने का प्रयास करने की वर्तमान में कोई योजना नहीं है। 2008 में, यह प्रमाणित किया गया था कि यह प्राकृतिक थोरियम के प्रतिरूपों में शोध किया गया था,[3] किन्तु वह प्रमाण अब अधिक त्रुटिहीन प्रौद्योगिकी का उपयोग करके प्रयोग की वर्तमान पुनरावृत्तियों द्वारा समाप्त कर दिया गया है।

रासायनिक रूप से, अनबिबियम मोम और थोरियम के कुछ समानता दिखाने की अपेक्षा है। चूँकि, सापेक्षतावादी प्रभावों के कारण इसके कुछ गुण भिन्न हो सकते हैं; उदाहरण के लिए, g-ब्लॉक सुपरएक्टिनाइड श्रृंखला में इसकी अनुमानित स्थिति के अतिरिक्त, इसकी भूमिगत स्थिति इलेक्ट्रॉन विन्यास [Og] 7d1 8s2 8p1 या [Og] 8s2 8p2, होने की अपेक्षा है।[1]

इतिहास

संश्लेषण प्रयास

संलयन-वाष्पीकरण

1970 के दशक में अनबिबियम को संश्लेषित करने के दो प्रयास किए गए थे, दोनों N = 184 और Z > 120 पर स्थिरता के द्वीप पर प्रारंभिक भविष्यवाणियों से प्रेरित थे,[4] और विशेष रूप से क्या अतिभारी तत्व संभावित रूप से स्वाभाविक रूप से उत्पन्न हो सकते हैं।[5] अनबिबियम को संश्लेषित करने का प्रथम प्रयास 1972 में फ्लेरोव एट अल द्वारा किया गया था। संयुक्त परमाणु अनुसंधान संस्थान (जेआईएनआर) में, भारी-आयन प्रेरित गर्म संलयन प्रतिक्रियाओं का उपयोग करते हुए:[5]

238
92
U
+ 66,68
30
Zn
304,306
122
Ubb
* → कोई परमाणु नहीं

अनबिबियम को संश्लेषित करने का एक और असफल प्रयास 1978 में जीएसआई हेल्महोल्ट्ज़ सेंटर में किया गया था, जहाँ प्राकृतिक एर्बियम लक्ष्य को क्सीनन-136 आयनों के साथ बमबारी की गई थी:[5]

nat
68
Er
+ 136
54
Xe
298,300,302,303,304,306
Ubb
* → कोई परमाणु नहीं

किसी परमाणु का पता नहीं चला और 5 nb (5,000 pb) की उपज सीमा मापी गई। वर्तमान परिणामों (फ्लोरोवियम देखें) ने दिखाया है कि इन प्रयोगों की संवेदनशीलता परिमाण के कम से कम 3 क्रमों से अधिक अल्प थी।[4] विशेष रूप से, के बीच प्रतिक्रिया 170Er और 136Xe के मध्य प्रतिक्रिया से माइक्रोसेकंड के अर्ध जीवन के साथ अल्फा उत्सर्जक उत्पन्न होने की अपेक्षा थी जो कि फ्लोरोवियम के समस्थानिकों में क्षय हो जाएगा, और अर्ध जीवन संभवतः कई घंटों तक बढ़ जाएगा, क्योंकि फ्लोरोवियम के स्थिरता द्वीप के केंद्र के निकट स्थित होने की भविष्यवाणी की गई है। बारह घंटे के विकिरण के पश्चात इस प्रतिक्रिया में कुछ भी नहीं मिला। 238U और 65Cu से यूनिनियम को संश्लेषित करने के समान असफल प्रयास के पश्चात, यह निष्कर्ष निकाला गया कि अतिभारी नाभिकों का अर्ध जीवन माइक्रोसेकंड से अल्प होना चाहिए या क्रॉस सेक्शन बहुत छोटे हैं।[6] अतिभारी तत्वों के संश्लेषण पर वर्तमान शोध से ज्ञात हुआ है कि दोनों निष्कर्ष सत्य हैं।[7][8]

2000 में, गेसेलशाफ्ट फर श्वेरियोनएनफोर्सचुंग (जीएसआई) हेल्महोल्ट्ज़ सेंटर फॉर हेवी आयन रिसर्च ने अत्यधिक संवेदनशीलता के साथ एक समान प्रयोग किया:[5]

238
92
U
+ 70
30
Zn
308
122
Ubb
* → कोई परमाणु नहीं

इन परिणामों से संकेत मिलता है कि ऐसे भारी तत्वों का संश्लेषण महत्वपूर्ण चुनौती बना हुआ है और बीम की तीव्रता और प्रायोगिक दक्षता में और सुधार की आवश्यकता है। अधिक गुणवत्ता वाले परिणामों के लिए भविष्य में संवेदनशीलता को 1 fb तक बढ़ाया जाना चाहिए।

यौगिक नाभिक विखंडन

306Ubb जैसे विभिन्न अतिभारी यौगिक नाभिकों की विखंडन विशेषताओं का अध्ययन करने वाले कई प्रयोग 2000 और 2004 के मध्य परमाणु प्रतिक्रियाओं की फ्लेरोव प्रयोगशाला में प्रदर्शित किए गए थे। दो परमाणु प्रतिक्रियाओं अर्थात् 248Cm + 58Fe और 242Pu + 64Ni का उपयोग किया गया।[5] परिणाम बताते हैं कि 132Sn (Z = 50, N = 82) जैसे सुपरहैवी नाभिक को बाहर निकालकर मुख्य रूप से अतिभारी नाभिक का विखंडन कैसे होता है। यह भी पाया गया कि संलयन-विखंडन मार्ग के लिए उपज 48Ca और 58Fe प्रोजेक्टाइल के मध्य समान थी, जो सुपरहैवी तत्व निर्माण में 58Fe प्रोजेक्टाइल के संभावित भविष्य के उपयोग का सुझाव देते हैं।[9]

स्वाभाविक रूप से पाए जाने वाले तत्व के रूप में शोध को प्रमाणित

2008 में, यरूशलेम के हिब्रू विश्वविद्यालय में इज़राइली भौतिक विज्ञानी अम्नोन मारिनोव के नेतृत्व में समूह ने प्रमाणित किया कि थोरियम के सापेक्ष 10-11 और 10-12 के मध्य की बहुलता में प्राकृतिक रूप से पाए जाने वाले थोरियम जमाव में अनबिबियम-292 के एकल परमाणु पाए गए हैं।[3] मारगुएराइट पेरे की 1939 में फ्रैनशियम के शोध के पश्चात, 69 वर्षों में यह प्रथम बार था कि प्रकृति में एक नए तत्व के शोध को प्रमाणित किया गया था।[lower-alpha 1] मेरिनोव एट अल द्वारा प्रमाणित किया गया था कि वैज्ञानिक समुदाय के भाग द्वारा आलोचना की गई थी, और मारिनोव का कहना है कि उन्होंने लेख को प्रकृति और प्रकृति भौतिकी पत्रिकाओं में प्रस्तुत किया है, किन्तु दोनों ने इसे सहकर्मी समीक्षा के लिए भेजे बिना ही समाप्त कर दिया।[10] प्रमाणित किया गया कि अनबिबियम-292 परमाणु अतिविकृत या अतिविकृत आइसोमर्स हैं, जिनका अर्ध जीवन कम से कम 100 मिलियन वर्ष है।[5]

प्रौद्योगिकी की आलोचना, जिसका उपयोग प्रथम मास स्पेक्ट्रोमेट्री द्वारा हल्के थोरियम समस्थानिकों की पहचान करने में किया जाता था,[11] 2008 में फिजिकल रिव्यू सी में प्रकाशित हुआ था।[12] प्रकाशित टिप्पणी के पश्चात मारिनोव समूह द्वारा खंडन फिजिकल रिव्यू सी में प्रकाशित किया गया था।[13]

एक्सेलेरेटर मास स्पेक्ट्रोमेट्री (एएमएस) की उत्तम विधि का उपयोग करके थोरियम प्रयोग की पुनरावृत्ति 100 गुना उत्तम संवेदनशीलता के अतिरिक्त परिणामों की पुष्टि करने में विफल रही।[14] यह परिणाम थोरियम रेन्टजेनियम,[15] और अनबिबियम के लंबे समय तक रहने वाले समस्थानिकों के उनके प्रमाणों के संबंध में मारिनोव सहयोग के परिणामों पर अधिक संदेह उत्पन्न करता है।[11][3] अतिभारी तत्वों की वर्तमान समझ से संकेत मिलता है कि प्राकृतिक थोरियम के प्रतिरूपों में अनबिबियम के किसी भी चिन्ह के बने रहने की अधिक संभावना नहीं है।[5]

नामकरण

अज्ञात और अनदेखे तत्वों के लिए मेंडेलीव के नामकरण का उपयोग करते हुए, अनबिबियम को इका-थोरियम के रूप में जाना जाता है।[16] 1979 में आईयूपीएसी के व्यवस्थित तत्व नाम के पश्चात, तत्व को बड़े स्तर पर अनबिबियम के रूप में संदर्भित किया जाता है, जिसका परमाणु प्रतीक (Ubb) है,[17] जब तक तत्व का सामान्यतः शोध और संश्लेषित नहीं किया जाता है, और स्थायी नाम तय किया जाता है। वैज्ञानिक बड़े स्तर पर इस नामकरण परंपरा को अनदेखा करते हैं, और इसके अतिरिक्त अनबिबियम को केवल "तत्व 122" के रूप में (122), या कभी-कभी E122 या 122 के प्रतीक के साथ संदर्भित करते हैं।[18]

भविष्य के संश्लेषण की संभावनाएँ

अत्यधिक भारी नाभिक के अनुमानित क्षय मोड। संश्लेषित प्रोटॉन-समृद्ध नाभिक की रेखा Z = 120 के बाद जल्द ही टूटने की उम्मीद है, क्योंकि Z = 124 के आसपास तक आधा जीवन छोटा होने के कारण, Z = 122 आगे से अल्फा क्षय के बजाय सहज विखंडन का बढ़ता योगदान जब तक यह हावी नहीं हो जाता Z = 125 से, और Z = 130 के आसपास प्रोटॉन परमाणु ड्रिप लाइन। सफेद रिंग स्थिरता के द्वीप के अपेक्षित स्थान को दर्शाता है; सफेद रंग में उल्लिखित दो वर्ग दर्शाते हैं 291 कॉपरनिकस और 293सीएन, सदियों या सहस्राब्दी के आधे जीवन के साथ द्वीप पर सबसे लंबे समय तक रहने वाले न्यूक्लाइड होने की भविष्यवाणी की।[19][7]

मेंडेलीवियम से लेकर आगे तक प्रत्येक तत्व का उत्पादन संलयन-वाष्पीकरण प्रतिक्रियाओं में हुआ, जिसकी परिणति 2002 में सबसे भारी ज्ञात तत्व ओगनेसन के शोध में हुई थी।[20][21] ये प्रतिक्रियाएँ वर्तमान प्रौद्योगिकी की सीमा तक पहुँच गईं; उदाहरण के लिए, टेनेसीन के संश्लेषण के लिए छह महीने के लिए 22 मिलीग्राम 249Bk और तीव्र 48Ca बीम की आवश्यकता होती है।[22] अतिभारी तत्व अनुसंधान में बीम की तीव्रता लक्ष्य और डिटेक्टर को हानि पहुंचाए बिना प्रति सेकंड 1012 प्रोजेक्टाइल से अधिक नहीं हो सकती है से अधिक नहीं हो सकती है, और तीव्रता से दुर्लभ और अस्थिर एक्टिनाइड लक्ष्य की बड़ी मात्रा में उत्पादन अव्यावहारिक है।[23]

नतीजतन, परमाणु अनुसंधान के लिए संयुक्त संस्थान (JINR) या RIKEN में सुपरहैवी एलिमेंट फैक्ट्री (SHE-Factory) जैसी सुविधाओं पर भविष्य के प्रयोग किए जाने चाहिए, जो प्रयोगों को अधिक समय तक चलने की अनुमति देगा और पहचान की क्षमताओं में वृद्धि करेगा और सक्षम करेगा। अन्यथा दुर्गम प्रतिक्रियाएँ।

टिप्पणियाँ

  1. Four more elements were discovered after 1939 through synthesis, but were later found to also occur naturally: these were promethium, astatine, neptunium, and plutonium, all of which had been found by 1945.


संदर्भ

  1. 1.0 1.1 Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.
  2. 2.0 2.1 Eliav, E.; Fritzsche, S.; Kaldor, U. (2015). "Electronic structure theory of the superheavy elements". Nuclear Physics A. 944 (December 2015): 518–550. doi:10.1016/j.nuclphysa.2015.06.017.
  3. 3.0 3.1 3.2 Marinov, A.; Rodushkin, I.; Kolb, D.; et al. (2010). "Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th". International Journal of Modern Physics E. 19 (1): 131–140. arXiv:0804.3869. Bibcode:2010IJMPE..19..131M. doi:10.1142/S0218301310014662. S2CID 117956340.
  4. 4.0 4.1 Epherre, M.; Stephan, C. (1975). "Les éléments superlourds" (PDF). Le Journal de Physique Colloques (in français). 11 (36): C5–159–164. doi:10.1051/jphyscol:1975541.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 588. ISBN 978-0-19-960563-7.
  6. Hofmann, Sigurd (2014). On Beyond Uranium: Journey to the End of the Periodic Table. CRC Press. p. 105. ISBN 978-0415284950.
  7. 7.0 7.1 Karpov, A; Zagrebaev, V; Greiner, W (2015). "Superheavy Nuclei: which regions of nuclear map are accessible in the nearest studies" (PDF). cyclotron.tamu.edu. Texas A & M University. Retrieved 30 October 2018.
  8. Zagrebaev, Karpov & Greiner 2013
  9. see Flerov lab annual reports 2000–2004 inclusive http://www1.jinr.ru/Reports/Reports_eng_arh.html
  10. Richard Van Noorden (2 May 2008). "सबसे भारी तत्व के दावे की आलोचना". Chemical World.
  11. 11.0 11.1 Marinov, A.; Rodushkin, I.; Kashiv, Y.; et al. (2007). "प्राकृतिक रूप से पाए जाने वाले न्यूट्रॉन की कमी वाले Th समस्थानिकों में लंबे समय तक रहने वाले आइसोमेरिक राज्यों का अस्तित्व". Phys. Rev. C. 76 (2). 021303(R). arXiv:nucl-ex/0605008. Bibcode:2007PhRvC..76b1303M. doi:10.1103/PhysRevC.76.021303. S2CID 119443571.
  12. Barber, R. C.; De Laeter, J. R. (2009). ""प्राकृतिक रूप से पाए जाने वाले न्यूट्रॉन की कमी वाले थ समस्थानिकों में लंबे समय तक रहने वाले आइसोमेरिक राज्यों के अस्तित्व पर टिप्पणी"". Phys. Rev. C. 79 (4). 049801. Bibcode:2009PhRvC..79d9801B. doi:10.1103/PhysRevC.79.049801.
  13. Marinov, A.; Rodushkin, I.; Kashiv, Y.; et al. (2009). ""प्राकृतिक रूप से पाए जाने वाले न्यूट्रॉन की कमी वाले थ समस्थानिकों में लंबे समय तक रहने वाले आइसोमेरिक राज्यों के अस्तित्व पर टिप्पणी करें" का उत्तर दें"". Phys. Rev. C. 79 (4). 049802. Bibcode:2009PhRvC..79d9802M. doi:10.1103/PhysRevC.79.049802.
  14. Lachner, J.; Dillmann, I.; Faestermann, T.; et al. (2008). "न्यूट्रॉन की कमी वाले थोरियम समस्थानिकों में लंबे समय तक रहने वाले आइसोमेरिक राज्यों की खोज करें". Phys. Rev. C. 78 (6). 064313. arXiv:0907.0126. Bibcode:2008PhRvC..78f4313L. doi:10.1103/PhysRevC.78.064313. S2CID 118655846.
  15. Marinov, A.; Rodushkin, I.; Pape, A.; et al. (2009). "प्राकृतिक एयू में एक अत्यधिक भारी तत्व के लंबे समय तक रहने वाले समस्थानिकों का अस्तित्व" (PDF). International Journal of Modern Physics E. World Scientific. 18 (3): 621–629. arXiv:nucl-ex/0702051. Bibcode:2009IJMPE..18..621M. doi:10.1142/S021830130901280X. S2CID 119103410. Archived from the original (PDF) on 2014-07-14. Retrieved February 12, 2012.
  16. Eliav, Ephraim; Landau, Arie; Ishikawa, Yasuyuki; Kaldor, Uzi (26 March 2002). "Electronic structure of eka-thorium (element 122) compared with thorium". Journal of Physics B: Atomic, Molecular and Optical Physics. 35 (7): 1693–1700. Bibcode:2002JPhB...35.1693E. doi:10.1088/0953-4075/35/7/307. S2CID 250750167.
  17. Chatt, J. (1979). "100 से बड़ी परमाणु संख्या के तत्वों के नामकरण के लिए अनुशंसाएँ". Pure Appl. Chem. 51 (2): 381–384. doi:10.1351/pac197951020381.
  18. Hoffman, Lee & Pershina 2006, p. 1724.
  19. Greiner, W (2013). "Nuclei: superheavy–superneutronic–strange–and of antimatter" (PDF). Journal of Physics: Conference Series. 413 (1). 012002. Bibcode:2013JPhCS.413a2002G. doi:10.1088/1742-6596/413/1/012002. Retrieved 30 April 2017.
  20. Oganessian, Y. T.; et al. (2002). "Element 118: results from the first 249
    Cf
    + 48
    Ca
    experiment"
    . Communication of the Joint Institute for Nuclear Research. Archived from the original on 22 July 2011.
  21. "Livermore scientists team with Russia to discover element 118" (Press release). Livermore. 3 December 2006. Archived from the original on 17 October 2011. Retrieved 18 January 2008.
  22. Oganessian, Y. T.; Abdullin, F.; Bailey, P. D.; et al. (April 2010). "Synthesis of a New Element with Atomic Number 117" (PDF). Physical Review Letters. 104 (14). 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  23. Roberto, J. B. (2015). "अति-भारी तत्व अनुसंधान के लिए एक्टिनाइड लक्ष्य" (PDF). cyclotron.tamu.edu. Texas A & M University. Retrieved 30 October 2018.

ग्रन्थसूची


बाहरी संबंध