एकपदीय
गणित में, एक एकपदी, मोटे तौर पर बोल रहा है, एक बहुपद है जिसमें केवल एक योग होता है। एक एकपदी की दो परिभाषाओं का सामना करना पड़ सकता है:
- एक मोनोमियल, जिसे पावर उत्पाद भी कहा जाता है, वेरिएबल (गणित) की शक्तियों का एक उत्पाद है जो गैर-नकारात्मक पूर्णांक एक्सपोनेंट के साथ है, या दूसरे शब्दों में, वेरिएबल्स का एक उत्पाद, संभवतः दोहराव के साथ। उदाहरण के लिए, एक मोनोमियल है। अटल एक मोनोमियल है, जो खाली उत्पाद और के बराबर है किसी भी चर के लिए . यदि केवल एक चर माना जाता है, इसका मतलब यह है कि एक मोनोमियल या तो है या एक शक्ति का , साथ एक सकारात्मक पूर्णांक। यदि कई चरों पर विचार किया जाता है, तो कहें, तो प्रत्येक को एक घातांक दिया जा सकता है, ताकि कोई एकपदी रूप का हो साथ गैर-नकारात्मक पूर्णांक (ध्यान दें कि कोई एक्सपोनेंट संगत गुणक को बराबर कर देता है ).
- एक एकपदी एक अशून्य स्थिरांक से गुणा किए गए पहले अर्थ में एक एकपदी है, जिसे एकपदी का गुणांक कहा जाता है। पहले अर्थ में एक मोनोमियल दूसरे अर्थ में एक मोनोमियल का एक विशेष मामला है, जहां गुणांक है . उदाहरण के लिए, इस व्याख्या में तथा मोनोमियल हैं (दूसरे उदाहरण में, चर हैं और गुणांक एक सम्मिश्र संख्या है)।
लॉरेंट बहुपद और लॉरेंट श्रृंखला के संदर्भ में, एक एकपदी के घातांक ऋणात्मक हो सकते हैं, और प्यूसेक्स श्रृंखला के संदर्भ में, घातांक परिमेय संख्या हो सकते हैं।
चूंकि मोनोमियल शब्द, साथ ही बहुपद शब्द, देर से लैटिन शब्द बिनोमियम (द्विपद) से आता है, उपसर्ग द्वि- (लैटिन में दो) को बदलकर, एक मोनोमियल को सैद्धांतिक रूप से एक मोनोमियल कहा जाना चाहिए। मोनोमियल मोनोमियल के haplology द्वारा एक सिंकोप (ध्वन्यात्मक) है।[1]
दो परिभाषाओं की तुलना
किसी भी परिभाषा के साथ, मोनोमियल्स का सेट सभी बहुपदों का एक सबसेट है जो गुणन के तहत बंद है।
इस धारणा के दोनों उपयोग पाए जा सकते हैं, और कई मामलों में भेद को आसानी से अनदेखा कर दिया जाता है, उदाहरण के लिए पहले उदाहरण देखें[2] और दूसरा[3] अर्थ। अनौपचारिक चर्चाओं में भेद शायद ही कभी महत्वपूर्ण होता है, और प्रवृत्ति व्यापक दूसरे अर्थ की ओर होती है। बहुपदों की संरचना का अध्ययन करते समय, निश्चित रूप से पहले अर्थ के साथ एक धारणा की आवश्यकता होती है। यह उदाहरण के लिए एक बहुपद अंगूठी के मोनोमियल आधार या उस आधार के एक मोनोमियल ऑर्डर पर विचार करते समय मामला है। पहले अर्थ के पक्ष में एक तर्क यह भी है कि इन मूल्यों को नामित करने के लिए कोई स्पष्ट अन्य धारणा उपलब्ध नहीं है (शक्ति उत्पाद शब्द उपयोग में है, विशेष रूप से जब पहले अर्थ के साथ मोनोमियल का उपयोग किया जाता है, लेकिन यह स्थिरांक की अनुपस्थिति नहीं बनाता है या तो स्पष्ट है), जबकि बहुपद की धारणा स्पष्ट रूप से मोनोमियल के दूसरे अर्थ के साथ मेल खाती है।
इस लेख का शेष भाग मोनोमियल का पहला अर्थ मानता है।
मोनोमियल आधार
मोनोमियल्स (पहला अर्थ) के बारे में सबसे स्पष्ट तथ्य यह है कि कोई भी बहुपद उनका एक रैखिक संयोजन है, इसलिए वे सभी बहुपदों के सदिश स्थान का एक आधार (रैखिक बीजगणित) बनाते हैं, जिसे मोनोमियल आधार कहा जाता है - इसमें निरंतर निहित उपयोग का तथ्य अंक शास्त्र।
संख्या
डिग्री के मोनोमियल की संख्या में चर बहुसंयोजनों की संख्या है के बीच चुने गए तत्व चर (एक चर को एक से अधिक बार चुना जा सकता है, लेकिन क्रम कोई मायने नहीं रखता), जो मल्टीसेट गुणांक द्वारा दिया जाता है . यह व्यंजक द्विपद गुणांक के रूप में, बहुपद व्यंजक के रूप में भी दिया जा सकता है , या एक पोचममेर प्रतीक का उपयोग करना # के वैकल्पिक नोटेशन :
बाद के रूप विशेष रूप से उपयोगी होते हैं जब कोई चर की संख्या को ठीक करता है और डिग्री को अलग-अलग होने देता है। इन व्यंजकों से कोई यह देखता है कि नियत n के लिए, डिग्री d के एकपदी की संख्या एक बहुपद व्यंजक है डिग्री का अग्रणी गुणांक के साथ .
उदाहरण के लिए, तीन चरों में एकपदी की संख्या () डिग्री डी है ; ये संख्याएँ त्रिकोणीय संख्याओं का क्रम 1, 3, 6, 10, 15, ... बनाती हैं।
हिल्बर्ट श्रृंखला दी गई डिग्री के मोनोमियल्स की संख्या को व्यक्त करने का एक कॉम्पैक्ट तरीका है: डिग्री के मोनोमियल्स की संख्या में चर डिग्री का गुणांक है के औपचारिक शक्ति श्रृंखला विस्तार की
अधिक से अधिक डिग्री के एकपदीयों की संख्या d में n चर है . यह डिग्री के मोनोमियल्स के बीच एक-से-एक पत्राचार से होता है में अधिक से अधिक डिग्री के चर और मोनोमियल में चर, जिसमें 1 अतिरिक्त चर का प्रतिस्थापन होता है।
बहु-सूचकांक संकेतन
मल्टी-इंडेक्स नोटेशन अक्सर कॉम्पैक्ट नोटेशन के लिए उपयोगी होता है, खासकर जब दो या तीन से अधिक चर होते हैं। यदि उपयोग किए जा रहे चर एक अनुक्रमित परिवार बनाते हैं जैसे कोई सेट कर सकता है
तथा
फिर मोनोमियल
संक्षिप्त रूप में लिखा जा सकता है
इस अंकन के साथ, दो मोनोमियल्स का उत्पाद केवल घातांक सदिशों के जोड़ का उपयोग करके व्यक्त किया जाता है:
डिग्री
एक मोनोमियल की डिग्री को चर के सभी घातांकों के योग के रूप में परिभाषित किया गया है, जिसमें घातांक के बिना दिखाई देने वाले चर के लिए 1 के अंतर्निहित घातांक शामिल हैं; उदाहरण के लिए, पिछले खंड के उदाहरण में, डिग्री है . की उपाधि 1+1+2=4 है। शून्येतर स्थिरांक की डिग्री 0 है। उदाहरण के लिए, -7 की डिग्री 0 है।
एक एकपदी की डिग्री को कभी-कभी क्रम कहा जाता है, मुख्य रूप से श्रृंखला के संदर्भ में। इसे कुल डिग्री भी कहा जाता है जब इसे किसी एक चर में डिग्री से अलग करने की आवश्यकता होती है।
मोनोमियल डिग्री एकविभिन्न और बहुभिन्नरूपी बहुपदों के सिद्धांत के लिए मौलिक है। स्पष्ट रूप से, इसका उपयोग बहुपद की डिग्री और सजातीय बहुपद की धारणा को परिभाषित करने के लिए किया जाता है, साथ ही ग्रोबनेर आधार बनाने और कंप्यूटिंग में उपयोग किए जाने वाले वर्गीकृत मोनोमियल ऑर्डरिंग के लिए भी किया जाता है। स्पष्ट रूप से, इसका उपयोग टेलर श्रृंखला # टेलर श्रृंखला की शर्तों को कई चरों में समूहित करने के लिए किया जाता है।
ज्यामिति
बीजगणितीय ज्यामिति में एकपदी समीकरणों द्वारा परिभाषित किस्में α के कुछ सेट के लिए एकरूपता के विशेष गुण होते हैं। इसे बीजगणितीय समूहों की भाषा में एक बीजगणितीय टोरस की समूह क्रिया (गणित) के अस्तित्व के संदर्भ में (समान रूप से विकर्ण मैट्रिक्स के गुणक समूह द्वारा) व्यक्त किया जा सकता है। इस क्षेत्र का अध्ययन टोरिक ज्यामिति के नाम से किया जाता है।
यह भी देखें
- मोनोमियल प्रतिनिधित्व
- सामान्यीकृत क्रमपरिवर्तन मैट्रिक्स
- सजातीय बहुपद
- सजातीय कार्य
- बहुरेखीय रूप
- लॉग-लॉग प्लॉट
- शक्ति नियम
- विरल बहुपद
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- गैर नकारात्मक पूर्णांक
- रक़म
- चर (गणित)
- गुणक
- जटिल संख्या
- बेहोशी (फोनेटिक्स)
- बहुपद की अंगूठी
- सदिश स्थल
- बहुपद अभिव्यक्ति
- एक बहुपद की डिग्री
संदर्भ
- ↑ American Heritage Dictionary of the English Language, 1969.
- ↑ Cox, David; John Little; Donal O'Shea (1998). बीजगणितीय ज्यामिति का उपयोग करना. Springer Verlag. pp. 1. ISBN 0-387-98487-9.
- ↑ "Monomial", Encyclopedia of Mathematics, EMS Press, 2001 [1994]