फलन आरेख

From Vigyanwiki
Revision as of 10:56, 9 February 2023 by alpha>KishanNayak
फ़ंक्शन का आरेख

गणित में, एक फलन का आरेख, क्रमित युग्म का समुच्चय है , जहाँ सामान्यतः जहां और वास्तविक संख्याएं हैं, ये युग्म दो-आयामी स्थान में बिंदुओं के कार्टेशियन निर्देशांक हैं और इस प्रकार इस समतल का एक उपसमुच्चय बनाते हैं।

दो चर के फलनों के संबंध में वह युग्म है जिसके फलन का आरेख सामान्यतः क्रमिक त्रयी के समुच्चय को संदर्भित करता है जहाँ जैसा कि ऊपर की परिभाषा में संदर्भित है। यह समुच्चय त्रि-आयामी स्थान का एक उप समुच्चय है और दो वास्तविक चर के निरंतर वास्तविक मूल्यवान फलन लिए, यह एक समतल है।

विज्ञान, अभियांत्रिकी, प्रौद्योगिकी, वित्त और अन्य क्षेत्रों में, रेखांकन कई उद्देश्यों के लिए उपयोग किए जाने वाले उपकरण हैं।सबसे सरल मामले में एक चर को, सामान्यतः आयताकार समन्वय प्रणाली का उपयोग करके दूसरे के एक फलन के रूप में दर्शाया जाता है।

फलन का आरेख संबंध की एक विशेष विभक्ति है। गणित की आधुनिक नींव में, और, सामान्यतः, समुच्चय सिद्धांत में, एक फ़ंक्शन वास्तव में इसके आरेख के बराबर है।[1] हालांकि, यह अक्सर मानचित्र (गणित) के रूप में कार्यों को देखने के लिए उपयोगी होता है,[2] जिसमें न केवल इनपुट और आउटपुट के बीच संबंध शामिल है, बल्कि यह भी कि कौन सा समुच्चय डोमेन है, और कौन सा समुच्चय संहितात्मक है।उदाहरण के लिए, यह कहने के लिए कि एक फ़ंक्शन (अधिसूचित कार्य) पर है या कोडोमैन को ध्यान में नहीं रखा जाना चाहिए।अपने दम पर एक फ़ंक्शन का आरेख कोडोमैन को निर्धारित नहीं करता है।आम है[3] एक ही वस्तु पर विचार करने के बाद भी किसी फ़ंक्शन के फ़ंक्शन और आरेख दोनों का उपयोग करने के लिए, वे इसे एक अलग दृष्टिकोण से देखने का संकेत देते हैं। फ़ाइल: x^4 - 4^x.PNG|350px|thumb|फ़ंक्शन का आरेख अंतराल (गणित) पर [−2,+3]।यह भी दिखाया गया है कि दो वास्तविक जड़ें हैं और स्थानीय न्यूनतम जो अंतराल में हैं।

परिभाषा

एक मानचित्रण दिया दूसरे शब्दों में एक फ़ंक्शन साथ में इसके डोमेन के साथ और कोडोमैन मैपिंग का आरेख है[4] समुच्चय

जो एक सबसमुच्चय है ।एक फ़ंक्शन की अमूर्त परिभाषा में, वास्तव में बराबर है कोई देख सकता है कि, अगर, फिर आरेख का एक सबसमुच्चय है (सख्ती से यह बोल रहा है लेकिन कोई इसे प्राकृतिक आइसोमोर्फिज्म के साथ एम्बेड कर सकता है)।

उदाहरण

एक चर के कार्य

फ़ंक्शन का आरेख (गणित)

फ़ंक्शन का आरेख द्वारा परिभाषित

समुच्चय का सबसमुच्चय है
आरेख से, डोमेन आरेख में प्रत्येक जोड़ी के पहले घटक के समुच्चय के रूप में बरामद किया जाता है । इसी तरह, एक फ़ंक्शन की सीमा को पुनर्प्राप्त किया जा सकता है । कोडोमैन , हालांकि, अकेले आरेख से निर्धारित नहीं किया जा सकता है।

वास्तविक रेखा पर क्यूबिक बहुपद का आरेख

है
यदि यह समुच्चय कार्टेशियन विमान पर प्लॉट किया जाता है, तो परिणाम एक वक्र है (चित्र देखें)।


दो चर के कार्य

फ़ाइल: f (x, y) = - ((cosx)^2 + (cozy)^2)^2.PNG|thumb|250px|के आरेख का प्लॉट इसके अलावा नीचे के विमान पर इसकी ढाल का अनुमान है।

त्रिकोणमितीय फ़ंक्शन का आरेख

है
यदि इस समुच्चय को तीन आयामों में एक कार्टेशियन समन्वय प्रणाली#कार्टेशियन निर्देशांक पर प्लॉट किया जाता है, तो परिणाम एक सतह है (चित्र देखें)।

अक्सर यह आरेख, फ़ंक्शन के ढाल और कई स्तर के घटता के साथ दिखाने के लिए सहायक होता है।स्तर के घटता को फ़ंक्शन की सतह पर मैप किया जा सकता है या नीचे के विमान पर पेश किया जा सकता है।दूसरा आंकड़ा फ़ंक्शन के आरेख के ऐसे ड्राइंग को दर्शाता है:


यह भी देखें


संदर्भ

  1. Charles C Pinter (2014) [1971]. A Book of Set Theory. Dover Publications. p. 49. ISBN 978-0-486-79549-2.
  2. T. M. Apostol (1981). Mathematical Analysis. Addison-Wesley. p. 35.
  3. P. R. Halmos (1982). A Hilbert Space Problem Book. Springer-Verlag. p. 31. ISBN 0-387-90685-1.
  4. D. S. Bridges (1991). Foundations of Real and Abstract Analysis. Springer. p. 285. ISBN 0-387-98239-6.


बाहरी संबंध

  • Weisstein, Eric W. "Function Graph." From MathWorld—A Wolfram Web Resource.