रिफ्रैक्टरी

From Vigyanwiki
Revision as of 15:27, 25 January 2023 by alpha>Abhishek (Abhishek moved page आग रोक to रिफ्रैक्टरी without leaving a redirect)
एक टैंक कार में दुर्दम्य ईंटें # टारपीडो वैगनों का उपयोग पिघले हुए लोहे को ढोने के लिए किया जाता है

सामग्री विज्ञान में, एक आग रोक सामग्री या आग रोक एक सामग्री है जो थर्मल अपघटन , दबाव या रासायनिक हमले के लिए प्रतिरोधी है, और उच्च तापमान पर ताकत और रूप बनाए रखती है।[1] आग रोक पाली क्रिस्टलीय , पॉलीफ़ेज़, अकार्बनिक यौगिक , अधातु | गैर-धातु, सरंध्रता और विषम हैं। वे आमतौर पर निम्नलिखित सामग्रियों के ऑक्साइड या करबैड , नाइट्राइड आदि से बने होते हैं: सिलिकॉन , अल्युमीनियम , मैग्नीशियम , कैल्शियम , बोरॉन, क्रोमियम और zirconium [2] एएसटीएम इंटरनेशनल सी71 अपवर्तक को उन रासायनिक और भौतिक गुणों वाली गैर-धातु सामग्री के रूप में परिभाषित करता है जो उन्हें संरचनाओं के लिए लागू करते हैं, या सिस्टम के घटकों के रूप में, जो ऊपर के वातावरण के संपर्क में हैं। 1,000 °F (811 K; 538 °C).[3]

आग रोक सामग्री का उपयोग धातुकर्म भट्टियों, भट्टों, भस्मक और परमाणु रिएक्टर प्रौद्योगिकी में किया जाता है। कांच और धातुओं की ढलाई के लिए क्रूसिबल और मोल्ड बनाने के लिए और रॉकेट लॉन्च संरचनाओं के लिए फ्लेम डिफ्लेक्टर सिस्टम को सरफेस करने के लिए रेफ्रेक्ट्रीज का भी उपयोग किया जाता है।[4] आज, लौह धातु विज्ञान और धातु कास्टिंग क्षेत्र उत्पादित सभी अपवर्तक का लगभग 70% उपयोग करते हैं।[5]


आग रोक सामग्री

आग रोक सामग्री उच्च तापमान पर रासायनिक और शारीरिक रूप से स्थिर होनी चाहिए। ऑपरेटिंग वातावरण के आधार पर, उन्हें ऊष्मीय आघात के लिए प्रतिरोधी होना चाहिए, रासायनिक रूप से निष्क्रिय होना चाहिए, और/या तापीय चालकता की विशिष्ट श्रेणी और थर्मल विस्तार के गुणांक होना चाहिए।

एल्यूमीनियम (एल्यूमिना ), सिलिकॉन (सिलिका ) और मैग्नीशियम (मैग्नीशियम ऑक्साइड ) के ऑक्साइड रेफ्रेक्ट्रीज के निर्माण में उपयोग की जाने वाली सबसे महत्वपूर्ण सामग्री हैं। आमतौर पर रेफ्रेक्ट्रीज में पाया जाने वाला एक अन्य ऑक्साइड कैल्शियम (चूना (खनिज) ) का ऑक्साइड है।[6] रेफ्रेक्ट्रीज के निर्माण में आग मिट्टी का भी व्यापक रूप से उपयोग किया जाता है।

रेफ्रेक्ट्रीज को उन परिस्थितियों के अनुसार चुना जाना चाहिए जिनका वे सामना करते हैं। कुछ अनुप्रयोगों के लिए विशेष आग रोक सामग्री की आवश्यकता होती है।[7] zirconia का उपयोग तब किया जाता है जब सामग्री को अत्यधिक उच्च तापमान का सामना करना पड़ता है।[8] सिलिकन कार्बाइड और कार्बन (सीसा ) दो अन्य दुर्दम्य सामग्री हैं जिनका उपयोग कुछ बहुत ही गंभीर तापमान स्थितियों में किया जाता है, लेकिन उनका उपयोग ऑक्सीजन के संपर्क में नहीं किया जा सकता है, क्योंकि वे ऑक्सीकरण और जलेंगे।

टंगस्टन कार्बाइड या बोरॉन नाइट्राइड जैसे बाइनरी यौगिक बहुत दुर्दम्य हो सकते हैं। हेफ़नियम (IV) कार्बाइड 3890 °C के गलनांक के साथ ज्ञात सबसे दुर्दम्य बाइनरी यौगिक है।[9][10] त्रिगुट यौगिक टैंटलम हेफ़नियम कार्बाइड में सभी ज्ञात यौगिकों (4215 डिग्री सेल्सियस) के उच्चतम गलनांक में से एक है।[11][12] मोलिब्डेनम डिसिलिसाइड में 2030 ° C का उच्च गलनांक होता है और इसे अक्सर ताप तत्व के रूप में उपयोग किया जाता है।

उपयोग

आग रोक सामग्री निम्नलिखित कार्यों के लिए उपयोगी है:[13][2]

  1. एक गर्म माध्यम और एक युक्त बर्तन की दीवार के बीच एक थर्मल बाधा के रूप में कार्य करना
  2. शारीरिक तनाव को झेलना और गर्म माध्यम के कारण पोत की दीवारों के क्षरण को रोकना
  3. जंग से बचाव
  4. थर्मल इन्सुलेशन प्रदान करना

रेफ्रेक्ट्रीज के कई उपयोगी अनुप्रयोग हैं। धातु विज्ञान उद्योग में, अपवर्तक का उपयोग अस्तर भट्टियों, भट्टों, रिएक्टरों और अन्य जहाजों के लिए किया जाता है जो धातु और लावा जैसे गर्म माध्यमों को पकड़ते और परिवहन करते हैं। रेफ्रेक्ट्रीज में अन्य उच्च तापमान अनुप्रयोग होते हैं जैसे कि फायर हीटर, हाइड्रोजन सुधारक, अमोनिया प्राथमिक और माध्यमिक सुधारक, क्रैकिंग फर्नेस, यूटिलिटी बॉयलर, कैटेलिटिक क्रैकिंग यूनिट, एयर हीटर और सल्फर भट्टियां।[13]


आग रोक सामग्री का वर्गीकरण

रेफ्रेक्ट्रीज को कई तरह से वर्गीकृत किया जाता है, इसके आधार पर:

  1. रासायनिक संरचना
  2. बनाने की विधि
  3. फ्यूजन तापमान
  4. अपवर्तकता
  5. ऊष्मीय चालकता

रासायनिक संघटन पर आधारित

अम्लीय रेफ्रेक्ट्रीज

अम्लीय अपवर्तक आम तौर पर अम्लीय सामग्री के लिए अभेद्य होते हैं लेकिन आसानी से मूल सामग्री द्वारा हमला किया जाता है, और इस प्रकार अम्लीय वातावरण में अम्लीय स्लैग के साथ उपयोग किया जाता है। इनमें सिलिकॉन डाइऑक्साइड , एल्यूमिना और फायर क्ले ब्रिक रेफ्रेक्ट्रीज जैसे पदार्थ शामिल हैं। उल्लेखनीय अभिकर्मक जो एल्यूमिना और सिलिका दोनों पर हमला कर सकते हैं वे हैं हाइड्रोफ्लोरिक एसिड, फॉस्फोरिक एसिड और फ्लोरिनेटेड गैसें (जैसे एचएफ, एफ2).[14] उच्च तापमान पर, अम्लीय अपवर्तक भी चूने और बुनियादी आक्साइड के साथ प्रतिक्रिया कर सकते हैं।

  • सिलिका रेफ्रेक्ट्रीज रेफ्रेक्ट्रीज हैं जिनमें 93% से अधिक सिलिकॉन ऑक्साइड (SiO2). वे अम्लीय हैं, थर्मल शॉक, फ्लक्स और स्लैग प्रतिरोध, और उच्च स्पैलिंग प्रतिरोध के लिए उच्च प्रतिरोध है। सिलिका ईंटों का उपयोग अक्सर लोहा और इस्पात उद्योग में भट्टी सामग्री के रूप में किया जाता है। सिलिका ईंट की एक महत्वपूर्ण संपत्ति इसकी संलयन बिंदु तक उच्च भार के तहत कठोरता बनाए रखने की क्षमता है।[2]सिलिका रेफ्रेक्ट्रीज आमतौर पर सस्ती होती हैं इसलिए आसानी से डिस्पोजेबल होती हैं। कार्बनिक रेजिन के साथ मिश्रित होने पर कम सिलिकॉन ऑक्साइड (90%) के साथ उच्च शक्ति और अधिक कास्टिंग अवधि प्रदान करने वाली नई प्रौद्योगिकियां विकसित की गई हैं।
  • जिरकोनिया रेफ्रेक्ट्रीज मुख्य रूप से ज़िरकोनियम डाइऑक्साइड (ZrO2). वे अक्सर कांच की भट्टियों के लिए उपयोग किए जाते हैं क्योंकि उनके पास कम तापीय चालकता होती है, पिघले हुए कांच से आसानी से गीला नहीं होता है और पिघले हुए कांच के साथ कम प्रतिक्रियाशीलता होती है। ये रेफ्रेक्ट्रीज उच्च तापमान निर्माण सामग्री में अनुप्रयोगों के लिए भी उपयोगी हैं।
  • एल्युमिनोसिलिकेट रेफ्रेक्ट्रीज में मुख्य रूप से एल्यूमिना (Al2O3) और सिलिका (SiO2). एल्युमिनोसिलिकेट रेफ्रेक्ट्रीज सेमीएसिडिक, फायरक्ले कम्पोजिट या हाई एल्युमिना कंटेंट कम्पोजिट हो सकते हैं।[clarification needed][15]


बुनियादी रेफ्रेक्ट्रीज

बुनियादी अपवर्तक का उपयोग उन क्षेत्रों में किया जाता है जहां स्लैग और वातावरण बुनियादी होते हैं। वे क्षारीय सामग्री के लिए स्थिर हैं लेकिन एसिड पर प्रतिक्रिया कर सकते हैं, जो कि महत्वपूर्ण है। जी। कच्चा लोहा से फास्फोरस को हटाते समय (गिलक्रिस्ट-थॉमस प्रक्रिया देखें)। मुख्य कच्चा माल आरओ समूह से संबंधित है, जिनमें से मैग्नेशिया (एमजीओ) एक सामान्य उदाहरण है। अन्य उदाहरणों में डोलोमाइट और क्रोम-मैग्नेशिया शामिल हैं। बीसवीं सदी की पहली छमाही के लिए, स्टील बनाने की प्रक्रिया में भट्टी अस्तर सामग्री के रूप में कृत्रिम ख़तरे में डालना (भुना हुआ मैग्नेसाइट ) का इस्तेमाल किया गया था।

  • मैग्नेसाइट रेफ्रेक्ट्रीज ≥ 85% मैग्नीशियम ऑक्साइड (MgO) से बने होते हैं। उनके पास चूने और लोहे से भरपूर स्लैग, मजबूत घर्षण और संक्षारण प्रतिरोध, और लोड के तहत उच्च अपवर्तनीयता के लिए उच्च स्लैग प्रतिरोध है, और आमतौर पर धातुकर्म भट्टियों में उपयोग किया जाता है।[16]
  • डोलोमाइट रेफ्रेक्ट्रीज में मुख्य रूप से कैल्शियम मैग्नीशियम कार्बोनेट होता है। आमतौर पर, डोलोमाइट रेफ्रेक्ट्रीज का उपयोग कनवर्टर और रिफाइनिंग भट्टियों में किया जाता है।[17]
  • मैग्नेशिया-क्रोम रेफ्रेक्ट्रीज में मुख्य रूप से मैग्नीशियम ऑक्साइड (MgO) और क्रोमियम (III) ऑक्साइड (Cr) होते हैं।2O3). इन अपवर्तकों में उच्च अपवर्तकता होती है और संक्षारक वातावरण के लिए उच्च सहनशीलता होती है।

तटस्थ रेफ्रेक्ट्रीज

इनका उपयोग उन क्षेत्रों में किया जाता है जहां स्लैग और वातावरण या तो अम्लीय या बुनियादी होते हैं और रासायनिक रूप से अम्ल और क्षार दोनों के लिए स्थिर होते हैं। मुख्य कच्चे माल आर से संबंधित हैं, लेकिन इन तक ही सीमित नहीं हैं2O3 समूह। इन सामग्रियों के सामान्य उदाहरण हैं एल्यूमीनियम ऑक्साइड (Al2O3), क्रोमियम (III) ऑक्साइड (Cr2O3) और कार्बन।[2]

  • कार्बन ग्रेफाइट रेफ्रेक्ट्रीज में मुख्य रूप से ग्रेफाइट होता है। इन रेफ्रेक्ट्रीज का उपयोग अक्सर अत्यधिक कम करने वाले वातावरण में किया जाता है, और उच्च अपवर्तकता के उनके गुण उन्हें उत्कृष्ट तापीय स्थिरता और स्लैग के प्रतिरोध की अनुमति देते हैं।
  • क्रोमाइट रेफ्रेक्ट्रीज निसादित मैग्नेशिया और क्रोमिया से बने होते हैं। उनके पास उच्च तापमान, उच्च अपवर्तकता और स्लैग के लिए उच्च प्रतिरोध पर निरंतर मात्रा होती है।[18]
  • एल्यूमिना रेफ्रेक्ट्रीज ≥ 50% एल्यूमिना (Al2O3).

निर्माण की विधि के आधार पर

  1. ड्राई प्रेस प्रक्रिया
  2. फ्यूज्ड कास्ट
  3. हाथ ढाला
  4. गठित (सामान्य, निकाल दिया या रासायनिक रूप से बंधुआ)
  5. अन-गठित (मोनोलिथिक-प्लास्टिक, रैमिंग और गनिंग मास, कास्टेबल्स, मोर्टार, ड्राई वाइब्रेटिंग सीमेंट्स।)
  6. अन-गठित सूखी रेफ्रेक्ट्रीज।

== आकार

इनका मानक आकार और आकार होता है। इन्हें आगे मानक आकारों और विशेष आकारों में विभाजित किया जा सकता है। मानक आकारों में आयाम होते हैं जो अधिकांश दुर्दम्य निर्माताओं द्वारा पुष्टि किए जाते हैं और आम तौर पर एक ही प्रकार के भट्टों या भट्टियों पर लागू होते हैं। मानक आकार आमतौर पर ईंटें होती हैं जिनका एक मानक आयाम होता है 9 in × 4.5 in × 2.5 in (229 mm × 114 mm × 64 mm) और इस आयाम को एक ईंट समतुल्य कहा जाता है। ईंट समकक्षों का उपयोग यह अनुमान लगाने में किया जाता है कि एक औद्योगिक भट्टी में स्थापना करने के लिए कितनी दुर्दम्य ईंटें लगती हैं। दीवारों, छतों, मेहराबों, ट्यूबों और वृत्ताकार छिद्रों आदि का निर्माण करने के लिए निर्मित विभिन्न आकारों के मानक आकार हैं। विशेष रूप से भट्टियों के भीतर विशिष्ट स्थानों और विशेष भट्टों या भट्टियों के लिए विशेष आकार बनाए जाते हैं। विशेष आकृतियाँ आमतौर पर कम घनी होती हैं और इसलिए मानक आकृतियों की तुलना में कम कठोर होती हैं।

अनशेप्ड (मोनोलिथिक रेफ्रेक्ट्रीज)

ये बिना निश्चित रूप के होते हैं और इन्हें केवल लगाने पर ही आकार दिया जाता है। इन प्रकारों को अखंड अपवर्तक के रूप में जाना जाता है। सामान्य उदाहरण हैं प्लास्टिक द्रव्यमान, रेमिंग द्रव्यमान, कास्टेबल, गनिंग मास, फेटलिंग मिक्स, मोर्टार आदि।

प्रेरण भट्टी लाइनिंग में अक्सर उपयोग किए जाने वाले ड्राई वाइब्रेशन लाइनिंग भी मोनोलिथिक होते हैं, और सूखे पाउडर के रूप में बेचे और ले जाए जाते हैं, आमतौर पर विशिष्ट गुणों को बदलने के लिए अन्य रसायनों के अतिरिक्त मैग्नेशिया / एल्यूमिना संरचना के साथ। वे ब्लास्ट फर्नेस लाइनिंग में भी अधिक अनुप्रयोग पा रहे हैं, हालांकि यह उपयोग अभी भी दुर्लभ है।

संलयन तापमान के आधार पर

अपवर्तक सामग्री को संलयन तापमान (पिघलने बिंदु) के आधार पर तीन प्रकारों में वर्गीकृत किया जाता है।

  • सामान्य रेफ्रेक्ट्रीज में 1580 का संलयन तापमान होता है–1780 डिग्री सेल्सियस (जैसे फायर क्ले)
  • उच्च अपवर्तक में 1780 का संलयन तापमान होता है–2000 डिग्री सेल्सियस (जैसे क्रोमाइट)
  • सुपर रेफ्रेक्ट्रीज का फ्यूज़न तापमान > 2000 °C होता है (जैसे जिरकोनिया)

अपवर्तकता पर आधारित

रिफ्रैक्टरीनेस एक रिफ्रैक्टरी के मल्टीफ़ेज़ का गुण है जो लोड के बिना उच्च तापमान पर एक विशिष्ट नरमी की डिग्री तक पहुंचता है, और इसे पाइरोमेट्रिक शंकु समकक्ष (पीसीई) परीक्षण से मापा जाता है। रेफ्रेक्ट्रीज को इस प्रकार वर्गीकृत किया गया है:[2]

  • सुपर ड्यूटी: 33-38 का पीसीई मूल्य
  • उच्च कर्तव्य: 30-33 का पीसीई मूल्य
  • इंटरमीडिएट ड्यूटी: 28-30 का पीसीई मूल्य
  • कम कर्तव्य: 19–28 का पीसीई मूल्य

तापीय चालकता के आधार पर

रेफ्रेक्ट्रीज को तापीय चालकता के आधार पर वर्गीकृत किया जा सकता है जैसे या तो संचालन, गैर-चालन, या इन्सुलेटिंग। सिलिकॉन कार्बाइड (SiC) और जिरकोनियम कार्बाइड (ZrC) कंडक्टिंग रेफ्रेक्ट्रीज के उदाहरण हैं, जबकि सिलिका और एल्यूमिना नॉनकंडक्टिंग रीफ्रेक्ट्रीज के उदाहरण हैं। इन्सुलेट रेफ्रेक्ट्रीज में कैल्शियम सिलिकेट सामग्री, काओलिनाइट और ज़िरकोनिया शामिल हैं।

भट्ठी की दीवारों के माध्यम से गर्मी के नुकसान की दर को कम करने के लिए इन्सुलेटिंग रेफ्रेक्ट्रीज का उपयोग किया जाता है। तापीय चालकता को कम करने के लिए छोटे, समान छिद्रों की एक वांछित झरझरा संरचना के साथ, इन रेफ्रेक्ट्रीज में उच्च स्तर की सरंध्रता के कारण कम तापीय चालकता होती है। इन्सुलेट रेफ्रेक्ट्रीज को आगे चार प्रकारों में वर्गीकृत किया जा सकता है:[2]

  1. अनुप्रयोग तापमान ≤ 1100 डिग्री सेल्सियस के साथ गर्मी प्रतिरोधी इन्सुलेट सामग्री
  2. अनुप्रयोग तापमान के साथ आग रोक सामग्री ≤ 1400 डिग्री सेल्सियस
  3. अनुप्रयोग तापमान ≤ 1700 डिग्री सेल्सियस के साथ उच्च आग रोक सामग्री
  4. अनुप्रयोग तापमान ≤ 2000 डिग्री सेल्सियस के साथ अल्ट्रा-उच्च आग रोक सामग्री

आग रोक लंगर

सभी रेफ्रेक्ट्रीज को एंकरेज सिस्टम की आवश्यकता होती है जैसे तार से बने एंकर, निर्मित धातु (उदाहरण के लिए, हेक्समेटल) या सिरेमिक टाइलें दुर्दम्य अस्तर का समर्थन करने के लिए। छतों और ऊर्ध्वाधर दीवारों पर रेफ्रेक्ट्रीज के लिए उपयोग किए जाने वाले एंकरेज अधिक महत्वपूर्ण हैं क्योंकि उन्हें ऊंचे तापमान और ऑपरेटिंग परिस्थितियों में भी रेफ्रेक्ट्रीज के वजन का समर्थन करने में सक्षम रहना चाहिए।

आमतौर पर इस्तेमाल किए जाने वाले एंकरेज में गोलाकार या आयताकार क्रॉस-सेक्शन होते हैं। सर्कुलर क्रॉस-सेक्शन का उपयोग कम मोटाई के दुर्दम्य के लिए किया जाता है और वे प्रति यूनिट क्षेत्र में कम वजन का समर्थन करते हैं; जबकि आयताकार क्रॉस-सेक्शन का उपयोग उच्च मोटाई वाले आग रोक के लिए किया जाता है और प्रति इकाई क्षेत्र में आग रोक के उच्च वजन का समर्थन कर सकता है। एंकरों की संख्या ऑपरेटिंग परिस्थितियों और अपवर्तक सामग्री पर निर्भर करती है। एंकर की सामग्री, आकार, मात्रा और आकार के चुनाव का रिफ्रैक्टरी के उपयोगी जीवन पर महत्वपूर्ण प्रभाव पड़ता है।

टुंडिश बोर्डों को धातु के एंकरों की आवश्यकता नहीं होती है, बल्कि वे एक विशेष आग रोक पेस्ट और पाउडर द्वारा एक साथ फंस जाते हैं। अच्छा अभ्यास यह सुनिश्चित करने के लिए पेस्ट और पाउडर के संयोजन का उपयोग करना है कि सिस्टम लीक प्रूफ है और कास्टिंग की लंबी अवधि के दौरान खुद को एक साथ रखता है।

यह भी देखें

संदर्भ

  1. Ailsa Allaby and Michael Allaby (1996). Concise Dictionary of Earth Sciences. Oxford Paperbacks Oxford University Press.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 "Refractories and Classification of Refractories". IspatGuru. Retrieved 6 March 2020.
  3. ASTM Volume 15.01 Refractories; Activated Carbon, Advanced Ceramics
  4. "Refractory Materials for Flame Deflector Protection System Corrosion Control: Similar Industries and/or Launch Facilities Survey". NASA, January 2009
  5. "How cool are refractory materials?" (PDF). The Journal of the Southern African Institute of Mining and Metallurgy. 106 (September): 1–16. 2008. Retrieved 22 April 2016.
  6. Groover, Mikell P. (7 January 2010). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems (in English). John Wiley & Sons. ISBN 9780470467008.
  7. Sonntag, Kiss, Banhidi, Weber (2009). "New Kiln Furniture Solutions for Technical Ceramics". Ceramic Forum International. 86 (4): 29–34.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Roza, Greg (2009). zirconium (in English). The Rosen Publishing Group. ISBN 9781435850705.
  9. Hugh O. Pierson (1992). Handbook of chemical vapor deposition (CVD): principles, technology, and applications. William Andrew. pp. 206–. ISBN 978-0-8155-1300-1. Retrieved 22 April 2011.
  10. Hafnium Archived 11 August 2017 at the Wayback Machine, Los Alamos National Laboratory
  11. McGraw-Hill encyclopedia of science and technology: an international reference work in fifteen volumes including an index. McGraw-Hill. 1977. p. 360. ISBN 978-0-07-079590-7. Retrieved 22 April 2011.
  12. "हेफ़नियम". Encyclopædia Britannica. Encyclopædia Britannica, Inc. Retrieved 17 December 2010.
  13. 13.0 13.1 Alaa, Hussein. "Introduction to Refractories" (PDF). University of Technology - Iraq.
  14. "सटीक". Aluminum Oxide, Al2O3 Ceramic Properties. 2013. Retrieved 22 November 2014.
  15. Poluboiarinov, D. N. (1960). Vysokoglinozemistye keramicheskie i ogneupornye materialy. Moscow.{{cite book}}: CS1 maint: location missing publisher (link)
  16. "Magnesite Refractories". www.termorefractories.com. Retrieved 6 March 2020.
  17. "Dolomite brick and magnesia dolomite brick". www.ruizhirefractory.com. Retrieved 6 March 2020.
  18. "Chromite Refractories". termorefractories.com. Retrieved 6 March 2020.


बाहरी कड़ियाँ