अनुमान का नियम

From Vigyanwiki
Revision as of 12:39, 13 February 2023 by alpha>Indicwiki (Created page with "{{Short description|Systematic logical process capable of deriving a conclusion from hypotheses}} {{Transformation rules}} तर्कशास्त्र के दर्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

तर्कशास्त्र के दर्शन में, अनुमान का नियम, अनुमान नियम या परिवर्तन नियम एक तार्किक रूप है जिसमें एक फ़ंक्शन होता है जो परिसर लेता है, उनके सिंटेक्स (तर्क)तर्क) का विश्लेषण करता है, और एक निष्कर्ष (या बहु-निष्कर्ष तर्क) देता है। उदाहरण के लिए, मूड सेट करना नामक अनुमान का नियम दो आधारवाक्य लेता है, एक यदि p तो q के रूप में और दूसरा p के रूप में, और निष्कर्ष q लौटाता है। नियम शास्त्रीय तर्क (साथ ही कई अन्य गैर-शास्त्रीय लॉजिक्स के शब्दार्थ) के शब्दार्थ के संबंध में मान्य है, इस अर्थ में कि यदि परिसर सत्य हैं (एक व्याख्या के तहत), तो निष्कर्ष भी है।

आमतौर पर, अनुमान का एक नियम सत्य, एक सिमेंटिक संपत्ति को संरक्षित करता है। बहु-मूल्यवान तर्क में, यह एक सामान्य पदनाम को सुरक्षित रखता है। लेकिन अनुमान की कार्रवाई का एक नियम विशुद्ध रूप से वाक्य-विन्यास है, और किसी भी शब्दार्थ संपत्ति को संरक्षित करने की आवश्यकता नहीं है: सूत्रों के सेट से सूत्र तक कोई भी कार्य अनुमान के नियम के रूप में गिना जाता है। आम तौर पर केवल प्रत्यावर्तन वाले नियम ही महत्वपूर्ण होते हैं; यानी नियम ऐसे हैं कि यह निर्धारित करने के लिए एक प्रभावी प्रक्रिया है कि क्या कोई दिया गया सूत्र नियम के अनुसार सूत्रों के दिए गए सेट का निष्कर्ष है। नियम का एक उदाहरण जो इस अर्थ में प्रभावी नहीं है, अनंत ω-सुसंगत सिद्धांत|ω-नियम है।[1] प्रस्तावपरक तर्क में अनुमान के लोकप्रिय नियमों में मोडस पोनेन्स, मूड ले रहा है और कोंटरापज़िशन शामिल हैं। प्रथम-क्रम विधेय तर्क तार्किक परिमाणकों से निपटने के लिए अनुमान के नियमों का उपयोग करता है।

मानक रूप

औपचारिक तर्क (और कई संबंधित क्षेत्रों) में, अनुमान के नियम आमतौर पर निम्नलिखित मानक रूप में दिए जाते हैं:

परिसर # 1
  परिसर#2
        ...
  परिसर#n   
  निष्कर्ष

यह अभिव्यक्ति बताती है कि जब भी कुछ तार्किक व्युत्पत्ति के दौरान दिए गए परिसर को प्राप्त किया जाता है, तो निर्दिष्ट निष्कर्ष भी लिया जा सकता है। परिसर और निष्कर्ष दोनों का वर्णन करने के लिए उपयोग की जाने वाली सटीक औपचारिक भाषा व्युत्पत्तियों के वास्तविक संदर्भ पर निर्भर करती है। एक साधारण मामले में, तार्किक सूत्रों का उपयोग किया जा सकता है, जैसे कि:

यह प्रस्तावपरक तर्क का मोडस पोनेन्स नियम है। अनुमान के नियम अक्सर मेटावैरिएबल्स को नियोजित करने वाले स्कीमा (तर्क) के रूप में तैयार किए जाते हैं।[2] उपरोक्त नियम (स्कीमा) में, अनुमान नियमों का एक अनंत सेट बनाने के लिए मेटावेरिएबल्स ए और बी को ब्रह्मांड के किसी भी तत्व (या कभी-कभी, सम्मेलन द्वारा, प्रतिबंधित उपसमुच्चय जैसे प्रस्ताव) के लिए तत्काल किया जा सकता है।

सबूत बनाने के लिए एक साथ बंधे नियमों के एक सेट से एक सबूत प्रणाली बनाई जाती है, जिसे व्युत्पत्ति भी कहा जाता है। किसी भी व्युत्पत्ति का केवल एक अंतिम निष्कर्ष होता है, जो कि सिद्ध या व्युत्पन्न कथन है। यदि आधारवाक्य व्युत्पत्ति में असंतुष्ट छोड़ दिया जाता है, तो व्युत्पत्ति एक काल्पनिक कथन का प्रमाण है: यदि परिसर धारण करता है, तो निष्कर्ष धारण करता है।

उदाहरण: दो प्रस्तावपरक तर्कों के लिए हिल्बर्ट सिस्टम्स

एक हिल्बर्ट प्रणाली में, परिसर और निष्कर्ष नियमों का निष्कर्ष केवल कुछ भाषा के सूत्र हैं, आमतौर पर मेटावेरिएबल्स को नियोजित करते हैं। प्रस्तुति की ग्राफिकल कॉम्पैक्टनेस के लिए और स्वयंसिद्धों और अनुमान के नियमों के बीच अंतर पर जोर देने के लिए, यह खंड अनुक्रम संकेतन का उपयोग करता है () नियमों की लंबवत प्रस्तुति के बजाय। इस अंकन में,


के रूप में लिखा गया है .

शास्त्रीय तर्कवाक्य तर्क के लिए औपचारिक भाषा को केवल निषेध (¬), निहितार्थ (→) और प्रस्तावात्मक प्रतीकों का उपयोग करके व्यक्त किया जा सकता है। एक प्रसिद्ध स्वयंसिद्धकरण, जिसमें तीन स्वयंसिद्ध स्कीमाटा और एक अनुमान नियम (मॉडस पोनेन्स) शामिल हैं:

(CA1) ⊢ ए → (बी → ए)
(सीए2) ⊢ (ए → (बी → सी)) → ((ए → बी) → (ए → सी))
(सीए3) ⊢ (¬ए → ¬बी) → (बी → ए)
(एमपी) ए, ए → बी ⊢ बी

इस मामले में अनुमान की दो धारणाएँ बेमानी लग सकती हैं, ⊢ और →। शास्त्रीय तर्कवाक्य तर्क में, वे वास्तव में मेल खाते हैं; कटौती प्रमेय बताता है कि ए ⊢ बी अगर और केवल अगर ⊢ ए → बी। हालांकि इस मामले में भी जोर देने लायक एक अंतर है: पहला अंकन एक निगमनात्मक तर्क का वर्णन करता है, जो वाक्यों से वाक्यों में जाने की एक गतिविधि है, जबकि ए → बी इस मामले में एक तार्किक संयोजक, निहितार्थ के साथ बनाया गया एक सूत्र है। एक अनुमान नियम के बिना (इस मामले में मोडस पोनेन्स की तरह), कोई कटौती या अनुमान नहीं है। इस बिंदु को लुईस कैरोल के संवाद में चित्रित किया गया है, जिसे कछुआ ने अकिलिस से कहा था,[3] साथ ही साथ व्हाट द टॉरटॉइज़ सेड टू अकिलिस#डिस्कशन द्वारा संवाद में पेश किए गए विरोधाभास को हल करने के बाद के प्रयास।

कुछ गैर-शास्त्रीय लॉजिक्स के लिए, कटौती प्रमेय लागू नहीं होता है। उदाहरण के लिए, Jan Łukasiewicz|Łukasiewicz के तीन-मूल्यवान तर्क को स्वयंसिद्ध किया जा सकता है:[4] (CA1) ⊢ ए → (बी → ए)

(LA2) ⊢ (ए → बी) → ((बी → सी) → (ए → सी))
(सीए3) ⊢ (¬ए → ¬बी) → (बी → ए)
(LA4) ⊢ ((ए → ¬ए) → ए) → ए
(एमपी) ए, ए → बी ⊢ बी

यह अनुक्रम शास्त्रीय तर्क से स्वयंसिद्ध 2 में परिवर्तन और अभिगृहीत 4 के जोड़ से भिन्न है। शास्त्रीय कटौती प्रमेय इस तर्क के लिए मान्य नहीं है, हालांकि एक संशोधित रूप धारण करता है, अर्थात् ए ⊢ बी अगर और केवल अगर ⊢ ए → (ए → बी)।[5]


स्वीकार्यता और व्युत्पन्नता

नियमों के एक सेट में, एक अनुमान नियम इस अर्थ में बेमानी हो सकता है कि यह स्वीकार्य या व्युत्पन्न है। एक व्युत्पन्न नियम वह है जिसका निष्कर्ष अन्य नियमों का उपयोग करके इसके परिसर से प्राप्त किया जा सकता है। एक स्वीकार्य नियम वह है जिसका निष्कर्ष जब भी परिसर धारण करता है। सभी व्युत्पन्न नियम स्वीकार्य हैं। अंतर की सराहना करने के लिए, प्राकृतिक संख्याओं (प्राकृतिक कटौती) को परिभाषित करने के लिए नियमों के निम्नलिखित सेट पर विचार करें इस तथ्य को पुष्ट करता है एक प्राकृतिक संख्या है):

पहला नियम बताता है कि 0 एक प्राकृतिक संख्या है, और दूसरा बताता है कि s(n) एक प्राकृतिक संख्या है यदि n है। इस प्रमाण प्रणाली में, निम्नलिखित नियम, यह प्रदर्शित करता है कि एक प्राकृतिक संख्या का दूसरा उत्तराधिकारी भी एक प्राकृतिक संख्या है, व्युत्पन्न है:

इसकी व्युत्पत्ति उपरोक्त उत्तराधिकारी नियम के दो उपयोगों की रचना है। किसी भी अशून्य संख्या के लिए पूर्ववर्ती के अस्तित्व पर जोर देने के लिए निम्नलिखित नियम केवल स्वीकार्य है:

यह प्राकृतिक संख्याओं का एक सत्य तथ्य है, जैसा कि गणितीय आगमन द्वारा सिद्ध किया जा सकता है। (यह साबित करने के लिए कि यह नियम स्वीकार्य है, आधारवाक्य की व्युत्पत्ति मान लें और इसकी व्युत्पत्ति उत्पन्न करने के लिए इसे शामिल करें ।) हालांकि, यह व्युत्पन्न नहीं है, क्योंकि यह आधार की व्युत्पत्ति की संरचना पर निर्भर करता है। इस वजह से, प्रूफ सिस्टम में अतिरिक्त के तहत व्युत्पत्ति स्थिर है, जबकि स्वीकार्यता नहीं है। अंतर देखने के लिए, मान लीजिए कि निम्नलिखित बकवास नियम को प्रमाण प्रणाली में जोड़ा गया:

इस नई प्रणाली में, दोहरा-उत्तराधिकारी नियम अभी भी व्युत्पन्न है। हालाँकि, पूर्ववर्ती को खोजने का नियम अब स्वीकार्य नहीं है, क्योंकि व्युत्पन्न करने का कोई तरीका नहीं है . स्वीकार्यता की भंगुरता इसे साबित करने के तरीके से आती है: चूंकि सबूत परिसर की व्युत्पत्तियों की संरचना पर शामिल हो सकता है, सिस्टम में विस्तार इस सबूत में नए मामले जोड़ते हैं, जो अब पकड़ में नहीं आ सकते हैं।

स्वीकार्य नियमों को प्रमाण प्रणाली के प्रमेयों के रूप में माना जा सकता है। उदाहरण के लिए, एक अनुक्रम कलन में जहां कट विलोपन होता है, कट नियम स्वीकार्य है।

यह भी देखें

संदर्भ

  1. Boolos, George; Burgess, John; Jeffrey, Richard C. (2007). Computability and logic. Cambridge: Cambridge University Press. p. 364. ISBN 0-521-87752-0.
  2. John C. Reynolds (2009) [1998]. Theories of Programming Languages. Cambridge University Press. p. 12. ISBN 978-0-521-10697-9.
  3. Kosta Dosen (1996). "Logical consequence: a turn in style". In Maria Luisa Dalla Chiara; Kees Doets; Daniele Mundici; Johan van Benthem (eds.). Logic and Scientific Methods: Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Springer. p. 290. ISBN 978-0-7923-4383-7. preprint (with different pagination)
  4. Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems. Cambridge University Press. p. 100. ISBN 978-0-521-88128-9.
  5. Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems. Cambridge University Press. p. 114. ISBN 978-0-521-88128-9.