फ्लाई बाय वायर

From Vigyanwiki
Revision as of 22:22, 15 February 2023 by alpha>Indicwiki (Created page with "{{Short description|Electronic flight control system}} {{Use dmy dates|date=July 2013}} {{Use American English|date=February 2022}} {{More citations needed|date=June 2010}} {{...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एयरबस ए320 परिवार ऐसा पहला विमान था जिसमें फुल ग्लास कॉकपिट और डिजिटल फ्लाई-बाय-वायर फ्लाइट कंट्रोल सिस्टम था। एकमात्र एनालॉग उपकरण रेडियो दिशा खोजक # रेडियो-चुंबकीय संकेतक (आरएमआई), ब्रेक प्रेशर इंडिकेटर, स्टैंडबाय अल्टीमीटर और कृत्रिम क्षितिज थे, बाद के दो को बाद के उत्पादन मॉडल में डिजिटल एकीकृत स्टैंडबाय उपकरण प्रणाली द्वारा प्रतिस्थापित किया जा रहा था।

फ्लाई-बाय-वायर (FBW) एक ऐसी प्रणाली है जो एक इलेक्ट्रानिक्स इंटरफ़ेस के साथ एक विमान के पारंपरिक विमान उड़ान नियंत्रण प्रणाली # हाइड्रो-मैकेनिकल को बदल देती है। उड़ान नियंत्रण के आंदोलनों को तारों द्वारा प्रेषित इलेक्ट्रॉनिक संकेतों में परिवर्तित किया जाता है, और उड़ान नियंत्रण कंप्यूटर यह निर्धारित करते हैं कि आदेशित प्रतिक्रिया प्रदान करने के लिए प्रत्येक नियंत्रण सतह पर एक्ट्यूएटर्स को कैसे स्थानांतरित किया जाए। यह एयरक्राफ्ट फ्लाइट कंट्रोल सिस्टम बैकअप सिस्टम (जैसे बोइंग 777#फ्लाई-बाय-वायर) का उपयोग कर सकता है या पूरी तरह से फ्लाई-बाय-वायर नियंत्रण का उपयोग कर सकता है।[1]

पूरी तरह से फ्लाई-बाय-वायर सिस्टम में सुधार पायलट के नियंत्रण इनपुट को वांछित परिणाम के रूप में व्याख्या करता है और उस परिणाम को प्राप्त करने के लिए आवश्यक नियंत्रण सतह की स्थिति की गणना करता है; इसका परिणाम एक बंद फीडबैक#इलेक्ट्रॉनिक इंजीनियरिंग लूप का उपयोग करके विभिन्न स्थितियों में रडर, एलेवेटर, एलेरॉन, फ्लैप और इंजन नियंत्रण के विभिन्न संयोजनों में होता है। पायलट परिणाम को प्रभावित करने वाले सभी नियंत्रण आउटपुट के बारे में पूरी तरह से अवगत नहीं हो सकता है, केवल यह कि विमान उम्मीद के मुताबिक प्रतिक्रिया कर रहा है। फ्लाई-बाय-वायर कंप्यूटर विमान को स्थिर करने और पायलट की भागीदारी के बिना उड़ान विशेषताओं को समायोजित करने और पायलट को विमान के सुरक्षित प्रदर्शन लिफाफे के बाहर संचालन से रोकने के लिए कार्य करते हैं।[2][3]


तर्क

मैकेनिकल और हाइड्रो-मैकेनिकल विमान उड़ान नियंत्रण प्रणाली अपेक्षाकृत भारी होते हैं और पुली, क्रैंक, टेंशन केबल और हाइड्रोलिक पाइप के सिस्टम द्वारा विमान के माध्यम से फ्लाइट कंट्रोल केबल्स की सावधानीपूर्वक रूटिंग की आवश्यकता होती है। विफलताओं से निपटने के लिए दोनों प्रणालियों को अक्सर अनावश्यक बैकअप की आवश्यकता होती है, जिससे वजन बढ़ता है। दोनों के पास बदलती वायुगतिकीय स्थितियों की भरपाई करने की सीमित क्षमता है। स्टाल (उड़ान), कताई और पायलट-प्रेरित दोलन (पीआईओ) जैसी खतरनाक विशेषताएं, जो मुख्य रूप से नियंत्रण प्रणाली के बजाय संबंधित विमान की स्थिरता और संरचना पर निर्भर करती हैं, पायलट के कार्यों पर निर्भर हैं।[4] फ्लाई-बाय-वायर शब्द का तात्पर्य विशुद्ध रूप से विद्युत संकेतित नियंत्रण प्रणाली से है। इसका उपयोग कंप्यूटर-कॉन्फ़िगर नियंत्रणों के सामान्य अर्थ में किया जाता है, जहां ऑपरेटर और अंतिम नियंत्रण एक्ट्यूएटर्स या सतहों के बीच एक कंप्यूटर सिस्टम इंटरपोज्ड होता है। यह नियंत्रण मापदंडों के अनुसार पायलट के मैनुअल इनपुट को संशोधित करता है।[2]

FBW विमान उड़ाने के लिए साइड-स्टिक्स या पारंपरिक उड़ान योक (विमान) का उपयोग किया जा सकता है।[5]


वजन की बचत

एक FBW विमान पारंपरिक नियंत्रणों के समान डिजाइन की तुलना में हल्का हो सकता है। यह आंशिक रूप से सिस्टम घटकों के कम समग्र वजन के कारण है और आंशिक रूप से क्योंकि विमान की प्राकृतिक स्थिरता को थोड़ा आराम दिया जा सकता है, एक परिवहन विमान के लिए थोड़ा और एक युद्धाभ्यास लड़ाकू के लिए अधिक, जिसका अर्थ है कि स्थिरता सतहें जो इसका हिस्सा हैं इसलिए विमान संरचना को छोटा बनाया जा सकता है। इनमें ऊर्ध्वाधर और क्षैतिज स्टेबलाइजर्स (फिन और टेलप्लेन) शामिल हैं जो धड़ के पीछे (आमतौर पर) होते हैं। यदि इन संरचनाओं को आकार में कम किया जा सकता है, तो एयरफ्रेम वजन कम हो जाता है। FBW नियंत्रणों के लाभों का पहले सेना द्वारा और फिर वाणिज्यिक एयरलाइन बाजार में फायदा उठाया गया। एयरलाइनरों की एयरबस श्रृंखला ने अपनी ए320 श्रृंखला से शुरू होने वाले पूर्ण-प्राधिकरण एफबीडब्ल्यू नियंत्रणों का उपयोग किया, ए320 उड़ान नियंत्रण देखें (हालांकि कुछ सीमित एफबीडब्ल्यू कार्य ए310 पर मौजूद थे)।[6] बोइंग ने अपने 777 और बाद के डिजाइनों के साथ पीछा किया।[citation needed]


बेसिक ऑपरेशन

बंद-लूप प्रतिक्रिया नियंत्रण

एक पायलट नियंत्रण स्तंभ या साइडस्टिक को स्थानांतरित करके विमान को एक निश्चित क्रिया करने के लिए उड़ान नियंत्रण कंप्यूटर को आदेश देता है, जैसे कि विमान को पिच करना, या एक तरफ रोल करना। उड़ान नियंत्रण कंप्यूटर तब गणना करता है कि किस नियंत्रण सतह की गति के कारण विमान उस क्रिया को करेगा और उन आदेशों को प्रत्येक सतह के लिए इलेक्ट्रॉनिक नियंत्रकों को जारी करेगा।[1]प्रत्येक सतह पर नियंत्रक इन आदेशों को प्राप्त करते हैं और फिर नियंत्रण सतह से जुड़े एक्ट्यूएटर्स को तब तक ले जाते हैं जब तक कि वह वहां नहीं चला जाता जहां उड़ान नियंत्रण कंप्यूटर ने उसे आदेश दिया था। नियंत्रक एलवीडीटी जैसे सेंसर के साथ उड़ान नियंत्रण सतह की स्थिति को मापते हैं।[7]


स्वचालित स्थिरता प्रणाली

फ्लाई-बाय-वायर कंट्रोल सिस्टम विमान के कंप्यूटरों को पायलट इनपुट के बिना कार्य करने की अनुमति देता है। स्वचालित स्थिरता प्रणाली इस तरह से काम करती है। जाइरोस्कोप और सेंसर जैसे एक्सेलेरोमीटर उड़ान की गतिशीलता (विमान) | पिच, रोल और यव कुल्हाड़ियों पर रोटेशन को समझने के लिए एक विमान में लगाए जाते हैं। किसी भी गति (उदाहरण के लिए सीधी और समतल उड़ान से) के परिणामस्वरूप कंप्यूटर को संकेत मिलते हैं, जो विमान को स्थिर करने के लिए स्वचालित रूप से नियंत्रण एक्चुएटर्स को स्थानांतरित कर सकता है।[3]


सुरक्षा और अतिरेक

जबकि पारंपरिक यांत्रिक या हाइड्रोलिक नियंत्रण प्रणाली आमतौर पर धीरे-धीरे विफल हो जाती है, सभी उड़ान नियंत्रण कंप्यूटरों की हानि तुरंत विमान को बेकाबू कर देती है। इस कारण से, अधिकांश फ्लाई-बाय-वायर सिस्टम में या तो निरर्थक कंप्यूटर (ट्रिपलप्लेक्स, क्वाड्रुप्लेक्स आदि), किसी प्रकार का यांत्रिक या हाइड्रोलिक बैकअप या दोनों का संयोजन शामिल होता है। यांत्रिक बैकअप के साथ एक मिश्रित नियंत्रण प्रणाली किसी भी पतवार की ऊंचाई को सीधे पायलट को प्रतिक्रिया देती है और इसलिए बंद लूप (फीडबैक) सिस्टम को संवेदनहीन बना देती है।[1]

एक या दो चैनलों की विफलता के मामले में संकेतों के नुकसान को रोकने के लिए विमान प्रणाली चौगुनी (चार स्वतंत्र चैनल) हो सकती है। उच्च प्रदर्शन वाले विमान जिनमें फ्लाई-बाय-वायर नियंत्रण होते हैं (जिन्हें CCV या कंट्रोल-कॉन्फ़िगर वाहन भी कहा जाता है) को जानबूझकर कुछ उड़ान व्यवस्थाओं में कम या नकारात्मक स्थिरता के लिए डिज़ाइन किया जा सकता है। – तेजी से प्रतिक्रिया करने वाले सीसीवी नियंत्रण इलेक्ट्रॉनिक रूप से प्राकृतिक स्थिरता की कमी को स्थिर कर सकते हैं।[3] फ्लाई-बाय-वायर सिस्टम की प्री-फ्लाइट सेफ्टी चेक अक्सर अंतर्निहित परीक्षण उपकरण (BITE) का उपयोग करके किया जाता है। हवाबाज़ या ज़मीनी समूह के वर्कलोड को कम करने और फ्लाइट-चेक को तेज करने के लिए कई नियंत्रण आंदोलन कदम स्वचालित रूप से किए जा सकते हैं।[citation needed] कुछ विमान, उदाहरण के लिए पनाविया बवंडर, विद्युत शक्ति खोने पर सीमित उड़ान नियंत्रण क्षमता के लिए एक बहुत ही बुनियादी हाइड्रो-मैकेनिकल बैकअप सिस्टम बनाए रखते हैं; बवंडर के मामले में यह केवल पिच और रोल अक्ष आंदोलनों के लिए स्टेबलाइजर्स के अल्पविकसित नियंत्रण की अनुमति देता है।[8]


इतिहास

एवरो कनाडा CF-105 तीर, फ्लाई-बाई-वायर नियंत्रण प्रणाली के साथ उड़ाया गया पहला गैर-प्रायोगिक विमान
F-8C क्रूसेडर डिजिटल फ्लाई-बाय-वायर टेस्टबेड

सर्वो-विद्युत रूप से संचालित नियंत्रण सतहों का पहली बार परीक्षण 1930 के दशक में सोवियत टुपोलेव ANT-20 पर किया गया था।[9] यांत्रिक और हाइड्रोलिक कनेक्शन के लंबे रन को तारों और इलेक्ट्रिक सर्वो से बदल दिया गया।

1934 में, Karl Otto Altvater [de] स्वचालित-इलेक्ट्रॉनिक सिस्टम के बारे में एक पेटेंट दायर किया, जो जमीन के करीब होने पर विमान को उड़ा देता था।[10] 1941 में, सीमेंस के एक इंजीनियर, कार्ल ओटो अल्वाटर ने Heinkel He 111 के लिए पहली फ्लाई-बाय-वायर प्रणाली का विकास और परीक्षण किया, जिसमें विमान को पूरी तरह से इलेक्ट्रॉनिक आवेगों द्वारा नियंत्रित किया गया था।[11][unreliable source?] पहला गैर-प्रायोगिक विमान जिसे फ्लाई-बाय-वायर उड़ान नियंत्रण प्रणाली के साथ डिजाइन और उड़ाया गया था (1958 में) एवरो कनाडा CF-105 एरो था,[12][13] 1969 में कॉनकॉर्ड तक एक उत्पादन विमान (हालांकि एरो को पांच निर्मित के साथ रद्द कर दिया गया था) के साथ दोहराया नहीं गया, जो पहला फ्लाई-बाय-वायर एयरलाइनर बन गया। इस प्रणाली में सॉलिड-स्टेट घटक और सिस्टम रिडंडेंसी भी शामिल है, जिसे कम्प्यूटरीकृत नेविगेशन और स्वचालित खोज और ट्रैक रडार के साथ एकीकृत करने के लिए डिज़ाइन किया गया था, डेटा अपलिंक और डाउनलिंक के साथ जमीनी नियंत्रण से उड़ने योग्य था, और पायलट को कृत्रिम अनुभव (प्रतिक्रिया) प्रदान करता था।[13]

बिना यांत्रिक या हाइड्रोलिक बैकअप वाला पहला शुद्ध इलेक्ट्रॉनिक फ्लाई-बाय-वायर विमान अपोलो चंद्र लैंडिंग प्रशिक्षण वाहन (एलएलटीवी) था, जिसे पहली बार 1968 में उड़ाया गया था।[14] यह 1964 में चंद्र लैंडिंग अनुसंधान वाहन (LLRV) द्वारा किया गया था, जिसने बिना किसी यांत्रिक बैकअप के फ्लाई-बाय-वायर फ़्लाइट का बीड़ा उठाया था।[15] नियंत्रण एक डिजिटल कंप्यूटर के माध्यम से तीन एनालॉग निरर्थक चैनलों के साथ था। सुखोई टी-4 ने भी यूएसएसआर में उड़ान भरी। लगभग उसी समय यूनाइटेड किंगडम में ब्रिटिश हॉकर हंटर लड़ाकू के एक ट्रेनर विमान संस्करण को फ्लाई-बाय-वायर उड़ान नियंत्रण के साथ ब्रिटिश रॉयल एयरक्राफ्ट प्रतिष्ठान में संशोधित किया गया था।[16] राइट-सीट पायलट के लिए।

यूके में दो सीटों वाले यूरो 707 को फैरी एविएशन कंपनी सिस्टम के साथ मैकेनिकल बैकअप के साथ उड़ाया गया था[17] 60 के दशक की शुरुआत में। जब एयर-फ्रेम उड़ान के समय से बाहर हो गया तो कार्यक्रम को बंद कर दिया गया।[16]

1972 में, यांत्रिक बैकअप के बिना पहला डिजिटल फ्लाई-बाय-वायर फिक्स्ड-विंग विमान[18] हवा में ले जाने के लिए एक F-8 क्रूसेडर था, जिसे प्रायोगिक विमान के रूप में संयुक्त राज्य अमेरिका के नासा द्वारा इलेक्ट्रॉनिक रूप से संशोधित किया गया था; F-8 ने अपोलो गाइडेंस कंप्यूटर|अपोलो गाइडेंस, नेविगेशन और कंट्रोल हार्डवेयर का इस्तेमाल किया।[19] एयरबस A320 ने 1988 में डिजिटल फ्लाई-बाय-वायर नियंत्रण वाले पहले एयरलाइनर के रूप में सेवा शुरू की।[20]


एनालॉग सिस्टम

सभी फ्लाई-बाय-वायर फ़्लाइट कंट्रोल सिस्टम हाइड्रोमेकेनिकल या इलेक्ट्रोमैकेनिकल फ़्लाइट कंट्रोल सिस्टम की जटिलता, नाजुकता और मैकेनिकल सर्किट के वजन को खत्म करते हैं - प्रत्येक को इलेक्ट्रॉनिक्स सर्किट से बदला जा रहा है। कॉकपिट में नियंत्रण तंत्र अब सिग्नल ट्रांसड्यूसर संचालित करते हैं, जो बदले में उपयुक्त इलेक्ट्रॉनिक कमांड उत्पन्न करते हैं। इन्हें अगली बार एक इलेक्ट्रॉनिक नियंत्रक द्वारा संसाधित किया जाता है - या तो एक एनालॉग इलेक्ट्रॉनिक्स एक, या (अधिक आधुनिक रूप से) एक डिजिटल इलेक्ट्रॉनिक्स। विमान और अंतरिक्ष यान ऑटो-पायलट अब इलेक्ट्रॉनिक नियंत्रक का हिस्सा हैं।[citation needed] हाइड्रोलिक सर्किट समान हैं, सिवाय इसके कि मैकेनिकल सर्वो वाल्व को इलेक्ट्रॉनिक नियंत्रक द्वारा संचालित विद्युत नियंत्रित सर्वो वाल्व से बदल दिया जाता है। यह एनालॉग फ्लाई-बाय-वायर फ्लाइट कंट्रोल सिस्टम का सबसे सरल और शुरुआती कॉन्फ़िगरेशन है। इस विन्यास में, उड़ान नियंत्रण प्रणाली को महसूस करना अनुकरण करना चाहिए। इलेक्ट्रॉनिक कंट्रोलर इलेक्ट्रिकल फील डिवाइसेस को नियंत्रित करता है जो मैनुअल कंट्रोल पर उपयुक्त फील फोर्स प्रदान करता है। इसका उपयोग कॉनकॉर्ड में किया गया था, जो पहला उत्पादन फ्लाई-बाय-वायर एयरलाइनर था।[lower-alpha 1]


डिजिटल सिस्टम

NASA F-8 क्रूसेडर अपने फ़्लाई-बाय-वायर सिस्टम के साथ हरे रंग में और अपोलो गाइडेंस कंप्यूटर

एक डिजिटल फ्लाई-बाय-वायर उड़ान नियंत्रण प्रणाली को उसके अनुरूप समकक्ष से बढ़ाया जा सकता है। डिजिटल सिग्नल प्रोसेसिंग एक साथ कई सेंसर से इनपुट प्राप्त और व्याख्या कर सकता है (जैसे altimeter और पिटोट पाइप) और वास्तविक समय में नियंत्रणों को समायोजित करता है। कंप्यूटर पायलट नियंत्रण और विमान सेंसर से स्थिति और बल इनपुट को समझते हैं। इसके बाद वे पायलट के इरादों को निष्पादित करने के लिए उड़ान नियंत्रण के लिए उपयुक्त कमांड संकेतों को निर्धारित करने के लिए विमान के गति के समीकरणों से संबंधित विभेदक समीकरणों को हल करते हैं।[22]

डिजिटल कंप्यूटरों की प्रोग्रामिंग उड़ान लिफाफे की सुरक्षा को सक्षम बनाती है। ये सुरक्षा विमान की वायुगतिकीय और संरचनात्मक सीमाओं के भीतर रहने के लिए एक विमान की हैंडलिंग विशेषताओं के अनुरूप हैं। उदाहरण के लिए, उड़ान लिफाफा संरक्षण मोड में कंप्यूटर पायलटों को विमान के फ्लाइट-कंट्रोल एनवेलप पर पूर्व निर्धारित सीमा से अधिक होने से रोककर विमान को खतरनाक तरीके से संभालने से रोकने की कोशिश कर सकता है, जैसे कि वे जो स्टाल और स्पिन को रोकते हैं, और जो एयरस्पीड और जी को सीमित करते हैं। हवाई जहाज पर बल। सॉफ्टवेयर को भी शामिल किया जा सकता है जो पायलट-प्रेरित दोलनों से बचने के लिए उड़ान-नियंत्रण इनपुट को स्थिर करता है।[23] चूंकि उड़ान-नियंत्रण कंप्यूटर लगातार पर्यावरण को प्रतिक्रिया देते हैं, पायलट के वर्कलोड को कम किया जा सकता है।[23]यह आराम से स्थिरता के साथ सैन्य विमानों को भी सक्षम बनाता है। इस तरह के विमानों के लिए प्राथमिक लाभ मुकाबला और प्रशिक्षण उड़ानों के दौरान अधिक गतिशीलता है, और तथाकथित लापरवाह संचालन क्योंकि स्टालिंग, स्पिनिंग और अन्य अवांछनीय प्रदर्शनों को कंप्यूटर द्वारा स्वचालित रूप से रोका जाता है। डिजिटल उड़ान नियंत्रण प्रणालियाँ स्वाभाविक रूप से अस्थिर लड़ाकू विमानों को सक्षम बनाती हैं, जैसे कि लॉकहीड F-117 नाइटहॉक और नॉर्थ्रॉप ग्रुम्मन बी-2 स्पिरिट उड़ने वाला पंख प्रयोग करने योग्य और सुरक्षित तरीके से उड़ान भरने के लिए।[22]


विधान

संयुक्त राज्य अमेरिका के संघीय विमानन प्रशासन (FAA) ने एविएशन सॉफ्टवेयर के प्रमाणन मानक के रूप में एयरबोर्न सिस्टम्स एंड इक्विपमेंट सर्टिफिकेशन में सॉफ्टवेयर कंसीडरेशन शीर्षक वाले एयरोनॉटिक्स/DO-178C के लिए रेडियो टेक्निकल कमीशन को अपनाया है। एयरोनॉटिक्स और कंप्यूटर ऑपरेटिंग सिस्टम के भौतिक कानून सहित डिजिटल फ्लाई-बाय-वायर सिस्टम में किसी भी सुरक्षा-महत्वपूर्ण घटक को विमान की श्रेणी के आधार पर DO-178C स्तर A या B के लिए प्रमाणित करने की आवश्यकता होगी, जो संभावित रोकथाम के लिए लागू है। विनाशकारी विफलताएँ।[24] फिर भी, कम्प्यूटरीकृत, डिजिटल, फ्लाई-बाय-वायर सिस्टम के लिए शीर्ष चिंता विश्वसनीयता है, एनालॉग इलेक्ट्रॉनिक कंट्रोल सिस्टम से भी ज्यादा। ऐसा इसलिए है क्योंकि सॉफ्टवेयर चलाने वाले डिजिटल कंप्यूटर अक्सर पायलट और विमान की उड़ान नियंत्रण सतहों के बीच एकमात्र नियंत्रण पथ होते हैं। यदि कंप्यूटर सॉफ्टवेयर किसी भी कारण से क्रैश हो जाता है, तो पायलट विमान को नियंत्रित करने में असमर्थ हो सकता है। इसलिए वस्तुतः सभी फ्लाई-बाय-वायर उड़ान नियंत्रण प्रणालियाँ या तो तिगुनी या चौगुनी अतिरेक (इंजीनियरिंग) हैं। इनमें तीन या चार उड़ान-नियंत्रण कंप्यूटर समानांतर में काम करते हैं और तीन या चार अलग-अलग बस (कंप्यूटिंग) उन्हें प्रत्येक नियंत्रण सतह से जोड़ते हैं।[citation needed]


अतिरेक

एकाधिक निरर्थक उड़ान नियंत्रण कंप्यूटर एक दूसरे के आउटपुट की लगातार निगरानी करते हैं। यदि एक कंप्यूटर किसी भी कारण से असामान्य परिणाम देना शुरू करता है, संभावित रूप से सॉफ़्टवेयर या हार्डवेयर विफलताओं या त्रुटिपूर्ण इनपुट डेटा सहित, तो संयुक्त प्रणाली को उड़ान नियंत्रण के लिए उपयुक्त कार्रवाई तय करने में उस कंप्यूटर से परिणामों को बाहर करने के लिए डिज़ाइन किया गया है। विशिष्ट सिस्टम विवरणों के आधार पर एक असामान्य उड़ान नियंत्रण कंप्यूटर को रीबूट करने की क्षमता हो सकती है, या यदि वे समझौते पर वापस आते हैं तो इसके इनपुट को पुन: सम्मिलित करने की क्षमता हो सकती है। कई विफलताओं से निपटने के लिए जटिल तर्क मौजूद हैं, जो सिस्टम को सरल बैक-अप मोड में वापस लाने के लिए प्रेरित कर सकते हैं।[22][23]

इसके अलावा, अधिकांश शुरुआती डिजिटल फ्लाई-बाय-वायर विमानों में एक एनालॉग इलेक्ट्रिकल, मैकेनिकल या हाइड्रोलिक बैक-अप फ्लाइट कंट्रोल सिस्टम भी था। अंतरिक्ष शटल के पास अपने प्राथमिक उड़ान-नियंत्रण सॉफ़्टवेयर चलाने वाले चार डिजिटल कम्प्यूटर के निरर्थक सेट के अलावा, एक पाँचवाँ बैक-अप कंप्यूटर था जो एक अलग से विकसित, कम-फ़ंक्शन, सॉफ़्टवेयर फ़्लाइट-कंट्रोल सिस्टम चला रहा था - जिसे कमांड किया जा सकता था उस स्थिति में संभाल लें जब कभी कोई खराबी अन्य चार के सभी कंप्यूटरों को प्रभावित करती है। इस बैक-अप सिस्टम ने कुल उड़ान-नियंत्रण-प्रणाली की विफलता के जोखिम को कम करने के लिए काम किया, जो कि एक सामान्य-उद्देश्य उड़ान सॉफ़्टवेयर दोष के कारण हो रहा था, जो अन्य चार कंप्यूटरों में नोटिस से बच गया था।[1][22]


उड़ान की क्षमता

एयरलाइनरों के लिए, फ़्लाइट-कंट्रोल रिडंडेंसी उनकी सुरक्षा में सुधार करती है, लेकिन फ़्लाई-बाय-वायर कंट्रोल सिस्टम, जो शारीरिक रूप से हल्के होते हैं और पारंपरिक नियंत्रणों की तुलना में रखरखाव की मांग कम होती है, स्वामित्व की लागत और इन-फ़्लाइट अर्थव्यवस्था दोनों के मामले में भी अर्थव्यवस्था में सुधार करते हैं। पिच अक्ष में सीमित आराम से स्थिरता के साथ कुछ डिजाइनों में, उदाहरण के लिए बोइंग 777, उड़ान नियंत्रण प्रणाली विमान को पारंपरिक रूप से स्थिर डिजाइन की तुलना में अधिक वायुगतिकीय रूप से कुशल हमले के कोण पर उड़ान भरने की अनुमति दे सकती है। आधुनिक एयरलाइनरों में आमतौर पर कम्प्यूटरीकृत फुल-ऑथॉरिटी डिजिटल इंजन कंट्रोल सिस्टम (FADECs) भी होते हैं जो उनके जेट इंजिन, एयर इनलेट्स, ईंधन भंडारण और वितरण प्रणाली को उसी तरह से नियंत्रित करते हैं जैसे कि FBW उड़ान नियंत्रण सतहों को नियंत्रित करता है। यह संभव सबसे कुशल उपयोग के लिए इंजन आउटपुट को लगातार विविध बनाने की अनुमति देता है।[25] Embraer E-Jet E2 परिवार|दूसरी पीढ़ी के Embraer E-Jet परिवार ने फ़्लाई-बाय-वायर सिस्टम से पहली पीढ़ी की तुलना में दक्षता में 1.5% सुधार प्राप्त किया, जिससे विमान के लिए 280 ft.² से 250 ft.² की कमी हुई E190/195 वेरिएंट पर क्षैतिज स्टेबलाइजर।[26]


एयरबस/बोइंग

वाणिज्यिक विमानों में फ्लाई-बाय-वायर सिस्टम को लागू करने के लिए एयरबस और बोइंग के दृष्टिकोण अलग-अलग हैं। एयरबस ए320 परिवार के बाद से, एयरबस फ्लाइट-एनवेलप कंट्रोल सिस्टम सामान्य कानून के तहत उड़ान भरते समय हमेशा अंतिम उड़ान नियंत्रण बनाए रखता है और पायलटों को विमान प्रदर्शन सीमाओं का उल्लंघन करने की अनुमति नहीं देगा जब तक कि वे वैकल्पिक कानून के तहत उड़ान भरने का विकल्प नहीं चुनते।[27] यह रणनीति बाद के एयरबस एयरलाइनरों पर जारी रखी गई है।[28][29] हालाँकि, अनावश्यक कंप्यूटरों की कई विफलताओं की स्थिति में, A320 में पिच ट्रिम और इसके पतवार के लिए एक यांत्रिक बैक-अप सिस्टम है, एयरबस A340 में विशुद्ध रूप से विद्युत (इलेक्ट्रॉनिक नहीं) बैक-अप पतवार नियंत्रण प्रणाली है और शुरुआत के साथ A380, सभी उड़ान-नियंत्रण प्रणालियों में बैक-अप प्रणालियाँ होती हैं जो तीन-अक्ष बैकअप नियंत्रण मॉड्यूल (BCM) के उपयोग के माध्यम से विशुद्ध रूप से विद्युतीय होती हैं।[30] बोइंग एयरलाइनर, जैसे बोइंग 777, पायलटों को कम्प्यूटरीकृत उड़ान-नियंत्रण प्रणाली को पूरी तरह से ओवरराइड करने की अनुमति देते हैं, जिससे विमान को अपने सामान्य उड़ान-नियंत्रण लिफाफे से बाहर उड़ने की अनुमति मिलती है।

अनुप्रयोग

जैसा कि 1986 में दिखाया गया था, एयरबस ने एयरबस A300 पंजीकरण F-BUAD पर फ्लाई-बाय-वायर का परीक्षण किया, फिर एयरबस A320 का उत्पादन किया।

*कॉनकॉर्ड अनुरूप नियंत्रण वाला पहला उत्पादन फ्लाई-बाय-वायर विमान था।

  • जनरल डायनेमिक्स F-16 डिजिटल फ्लाई-बाय-वायर नियंत्रणों का उपयोग करने वाला पहला उत्पादन विमान था।
  • स्पेस शटल ऑर्बिटर में एक डिजिटल इलेक्ट्रॉनिक्स|ऑल-डिजिटल फ्लाई-बाय-वायर कंट्रोल सिस्टम था। 1977 के दौरान स्पेस शटल अंतरिक्ष शटल उद्यम पर शुरू हुए ग्लाइडर विमान | ग्लाइडर अनपॉवर्ड-फ्लाइट एप्रोच और लैंडिंग टेस्ट के दौरान इस प्रणाली का पहली बार प्रयोग किया गया था (एकमात्र उड़ान नियंत्रण प्रणाली के रूप में)।[31]
  • 1984 के दौरान उत्पादन में लॉन्च किया गया, एयरबस इंडस्ट्रीज एयरबस ए320 परिवार एक पूर्ण-डिजिटल फ्लाई-बाय-वायर नियंत्रण प्रणाली के साथ उड़ान भरने वाला पहला एयरलाइनर बन गया।[32]
  • 1993 में इसकी शुरूआत के साथ बोइंग सी-17 ग्लोबमास्टर III पहला फ्लाई-बाय-वायर सैन्य परिवहन विमान बन गया।[33]
  • 2005 में, डसॉल्ट फाल्कन 7X फ्लाई-बाय-वायर नियंत्रण वाला पहला व्यापार जेट बन गया।[34]
  • एम्ब्रेयर ई-जेट परिवार|पहली पीढ़ी के एम्ब्रेयर ई-जेट परिवार में बंद फीडबैक लूप के बिना एक पूरी तरह से डिजिटल फ्लाई-बाय-वायर को 2002 में एकीकृत किया गया था। लूप (फीडबैक) को बंद करके, एम्ब्रेयर ई-जेट ई2 परिवार|दूसरी पीढ़ी के एम्ब्रेयर ई-जेट परिवार ने 2016 में 1.5% दक्षता सुधार प्राप्त किया।[26]


इंजन डिजिटल नियंत्रण

FADEC (पूर्ण प्राधिकरण डिजिटल इंजन नियंत्रण) इंजनों के आगमन से इंजनों को पूरी तरह से एकीकृत करने के लिए उड़ान नियंत्रण प्रणाली और autothrottle के संचालन की अनुमति मिलती है। आधुनिक सैन्य विमानों पर अन्य प्रणालियाँ जैसे ऑटोस्टैबिलाइज़ेशन, नेविगेशन, रडार और हथियार प्रणाली सभी उड़ान नियंत्रण प्रणालियों के साथ एकीकृत हैं। FADEC इंजन के गलत संचालन, विमान के नुकसान या उच्च पायलट वर्कलोड के डर के बिना विमान से अधिकतम प्रदर्शन निकालने की अनुमति देता है।[citation needed] नागरिक क्षेत्र में, एकीकरण उड़ान सुरक्षा और मितव्ययिता को बढ़ाता है। एयरबस फ्लाई-बाय-वायर विमान खतरनाक स्थितियों से सुरक्षित होते हैं जैसे कि कम-गति स्टॉल या उड़ान लिफाफा सुरक्षा द्वारा अत्यधिक तनाव। नतीजतन, ऐसी स्थितियों में, उड़ान नियंत्रण प्रणाली इंजनों को पायलट हस्तक्षेप के बिना जोर बढ़ाने का आदेश देती है। इकॉनोमी क्रूज़ मोड में, फ़्लाइट कंट्रोल सिस्टम थ्रॉटल और फ़्यूल टैंक चयन को सटीक रूप से समायोजित करते हैं। FADEC असंतुलित इंजन थ्रस्ट से साइडवेज फ्लाइट की भरपाई के लिए आवश्यक रडर ड्रैग को कम करता है। A330/A340 परिवार पर, क्रूज उड़ान के दौरान विमान के गुरुत्वाकर्षण के केंद्र को अनुकूलित करने के लिए ईंधन को मुख्य (पंख और मध्य धड़) टैंक और क्षैतिज स्टेबलाइज़र में एक ईंधन टैंक के बीच स्थानांतरित किया जाता है। ईंधन प्रबंधन नियंत्रण विमान के गुरुत्वाकर्षण के केंद्र को लिफ्ट में वायुगतिकीय ट्रिम्स को खींचने के बजाय ईंधन वजन के साथ सटीक रूप से छंटनी करता है।[citation needed]


आगे के घटनाक्रम

फ्लाई-बाय-ऑप्टिक्स

कावासाकी पी-1

फ्लाई-बाय-ऑप्टिक्स का उपयोग कभी-कभी फ्लाई-बाय-वायर के बजाय किया जाता है क्योंकि यह उच्च डेटा अंतरण दर, विद्युत चुम्बकीय हस्तक्षेप और हल्के वजन के लिए प्रतिरक्षा प्रदान करता है। ज्यादातर मामलों में, केबल को बिजली से प्रकाशित तंतु केबल में बदल दिया जाता है। फाइबर ऑप्टिक्स के उपयोग के कारण कभी-कभी इसे फ्लाई-बाय-लाइट कहा जाता है। सॉफ़्टवेयर द्वारा उत्पन्न और नियंत्रक द्वारा व्याख्या किए गए डेटा समान रहते हैं।[citation needed] फ्लाई-बाय-लाइट में अधिक सामान्य फ्लाई-बाय-वायर नियंत्रण प्रणालियों की तुलना में सेंसर के लिए विद्युत-चुंबकीय गड़बड़ी को कम करने का प्रभाव होता है। कावासाकी पी-1 दुनिया का पहला उत्पादन विमान है जो इस तरह की उड़ान नियंत्रण प्रणाली से लैस है।[35]


पावर-बाय-वायर

फ्लाई-बाय-वायर फ्लाइट कंट्रोल सिस्टम में मैकेनिकल ट्रांसमिशन सर्किट को खत्म करने के बाद, अगला कदम भारी और भारी हाइड्रोलिक सर्किट को खत्म करना है। हाइड्रोलिक सर्किट को विद्युत शक्ति सर्किट द्वारा प्रतिस्थापित किया जाता है। पावर सर्किट पावर इलेक्ट्रिकल या स्व-निहित इलेक्ट्रोहाईड्रॉलिक एक्ट्यूएटर्स जो डिजिटल उड़ान नियंत्रण कंप्यूटर द्वारा नियंत्रित होते हैं। डिजिटल फ्लाई-बाय-वायर के सभी लाभ बरकरार हैं क्योंकि पावर-बाय-वायर घटक फ्लाई-बाय-वायर घटकों के सख्ती से पूरक हैं।

सबसे बड़ा लाभ वजन बचत, निरर्थक पावर सर्किट की संभावना और विमान उड़ान नियंत्रण प्रणाली और इसके एवियोनिक्स सिस्टम के बीच सख्त एकीकरण है। हाइड्रोलिक्स की अनुपस्थिति रखरखाव लागत को बहुत कम कर देती है। इस प्रणाली का उपयोग लॉकहीड मार्टिन F-35 लाइटनिंग II और एयरबस A380 बैकअप उड़ान नियंत्रण में किया जाता है। बोइंग 787 ड्रीमलाइनर और एयरबस A350 में विद्युत चालित बैकअप उड़ान नियंत्रण भी शामिल हैं जो हाइड्रोलिक पावर के कुल नुकसान की स्थिति में भी चालू रहते हैं।[36]


वायरलेस द्वारा फ्लाई

वायरिंग एक विमान में काफी मात्रा में वजन जोड़ती है; इसलिए, शोधकर्ता फ्लाई-बाय-वायरलेस समाधानों को लागू करने की खोज कर रहे हैं। फ्लाई-बाय-वायरलेस सिस्टम फ्लाई-बाय-वायर सिस्टम के समान हैं, हालांकि, भौतिक परत के लिए वायर्ड प्रोटोकॉल का उपयोग करने के बजाय वायरलेस प्रोटोकॉल कार्यरत है।[citation needed] वजन कम करने के अलावा, एक वायरलेस समाधान को लागू करने से विमान के पूरे जीवन चक्र में लागत कम करने की क्षमता होती है। उदाहरण के लिए, तार और कनेक्टर्स से जुड़े कई प्रमुख विफलता बिंदु समाप्त हो जाएंगे इस प्रकार तारों और कनेक्टर्स की समस्या निवारण में लगने वाले घंटे कम हो जाएंगे। इसके अलावा, इंजीनियरिंग की लागत संभावित रूप से कम हो सकती है क्योंकि वायरिंग इंस्टॉलेशन को डिजाइन करने में कम समय खर्च होगा, विमान के डिजाइन में देर से बदलाव को प्रबंधित करना आसान होगा, आदि।[37]


बुद्धिमान उड़ान नियंत्रण प्रणाली

एक नई उड़ान नियंत्रण प्रणाली, जिसे बुद्धिमान उड़ान नियंत्रण प्रणाली (IFCS) कहा जाता है, आधुनिक डिजिटल फ्लाई-बाय-वायर उड़ान नियंत्रण प्रणाली का विस्तार है। इसका उद्देश्य उड़ान के दौरान विमान की क्षति और विफलता के लिए समझदारी से क्षतिपूर्ति करना है, जैसे स्वचालित रूप से इंजन थ्रस्ट और अन्य एवियोनिक्स का उपयोग करके गंभीर विफलताओं की भरपाई के लिए जैसे हाइड्रोलिक्स की हानि, पतवार की हानि, एलेरॉन की हानि, इंजन की हानि, आदि। कई एक उड़ान सिम्युलेटर पर प्रदर्शन किए गए जहां एक सेसना-प्रशिक्षित छोटे विमान के पायलट ने बड़े आकार के जेट विमान के साथ पूर्व अनुभव के बिना एक भारी क्षतिग्रस्त पूर्ण आकार के अवधारणा जेट को सफलतापूर्वक उतारा। इस विकास का नेतृत्व नासा आर्मस्ट्रांग उड़ान अनुसंधान केंद्र द्वारा किया जा रहा है।[38] यह बताया गया है कि एन्हांसमेंट ज्यादातर मौजूदा पूरी तरह से कम्प्यूटरीकृत डिजिटल फ्लाई-बाय-वायर फ्लाइट कंट्रोल सिस्टम के लिए सॉफ्टवेयर अपग्रेड हैं। डसॉल्ट फाल्कन 7X और एम्ब्रेयर लिगेसी 500 बिजनेस जेट्स में उड़ान कंप्यूटर हैं जो थ्रस्ट स्तरों और नियंत्रण इनपुट को समायोजित करके इंजन-आउट परिदृश्यों के लिए आंशिक रूप से क्षतिपूर्ति कर सकते हैं, लेकिन फिर भी पायलटों को उचित प्रतिक्रिया देने की आवश्यकता होती है।[39]


यह भी देखें

नोट

  1. The Tay-Viscount was the first airliner to be fitted with electrical controls [21]


संदर्भ

  1. 1.0 1.1 1.2 1.3 Fly by Wire Flight Control Systems Sutherland
  2. 2.0 2.1 Crane, Dale: Dictionary of Aeronautical Terms, third edition, page 224. Aviation Supplies & Academics, 1997. ISBN 1-56027-287-2
  3. 3.0 3.1 3.2 "Respect the unstable - Berkeley Center for Control and Identification" (PDF).
  4. McRuer, Duane T. (July 1995). "Pilot Induced Oscillations and Human Dynamic Behavior" (PDF). ntrs.nasa.gov. Archived (PDF) from the original on 2 June 2021.
  5. Cox, John (30 March 2014). "Ask the Captain: What does 'fly by wire' mean?". USA Today. Retrieved 3 December 2019.
  6. Dominique Brière, Christian Favre, Pascal Traverse, Electrical Flight Controls, From Airbus A320/330/340 to Future Military Transport Aircraft: A Family of Fault-Tolerant Systems, chapitre 12 du Avionics Handbook, Cary Spitzer ed., CRC Press 2001, ISBN 0-8493-8348-X
  7. "Flight Control Surfaces Sensors and Switches - Honeywell". sensing.honeywell.com. 2018. Retrieved 26 November 2018.
  8. The Birth of a Tornado. Royal Air Force Historical Society. 2002. pp. 41–43.
  9. One of the history page (in русский), PSC "Tupolev", archived from the original on 10 January 2011
  10. Patent Hoehensteuereinrichtung zum selbsttaetigen Abfangen von Flugzeugen im Sturzflug, Patent Nr. DE619055 C vom 11. Januar 1934.
  11. The History of German Aviation Kurt Tank Focke-Wulfs Designer and Test Pilot by Wolfgang Wagner page 122.
  12. W. (Spud) Potocki, quoted in The Arrowheads, Avro Arrow: the story of the Avro Arrow from its evolution to its extinction, pages 83–85. Boston Mills Press, Erin, Ontario, Canada 2004 (originally published 1980). ISBN 1-55046-047-1.
  13. 13.0 13.1 Whitcomb, Randall L. Cold War Tech War: The Politics of America's Air Defense. Apogee Books, Burlington, Ontario, Canada 2008. Pages 134, 163. ISBN 978-1-894959-77-3
  14. "NASA - Lunar Landing Research Vehicle". www.nasa.gov. Retrieved 24 April 2018.
  15. "1 NEIL_ARMSTRONG.mp4 (Part Two of Ottinger LLRV Lecture)". ALETROSPACE. 8 January 2011. Archived from the original on 11 December 2021. Retrieved 24 April 2018 – via YouTube.
  16. 16.0 16.1 "RAE Electric Hunter", Flight International, p. 1010, 28 June 1973, archived from the original on 5 March 2016
  17. "Fairey fly-by-wire", Flight International, 10 August 1972, archived from the original on 6 March 2016
  18. "Fly-by-wire for combat aircraft", Flight International, p. 353, 23 August 1973, archived from the original on 21 November 2018
  19. NASA F-8, www.nasa.gov, retrieved 3 June 2010
  20. Learmount, David (20 February 2017). "How A320 changed the world for commercial pilots". Flight International. Archived from the original on 21 February 2017. Retrieved 20 February 2017.
  21. "Dowty wins vectored thrust contract". Flight International. 5 April 1986. p. 40. Archived from the original on 21 November 2018.
  22. 22.0 22.1 22.2 22.3 "The Avionics Handbook" (PDF). davi.ws. Archived (PDF) from the original on 12 August 2011. Retrieved 24 April 2018.
  23. 23.0 23.1 23.2 "Airbus A320/A330/A340 Electrical Flight Controls: A Family of Fault-Tolerant Systems" (PDF). Archived from the original (PDF) on 27 March 2009.
  24. Explorer, Aviation. "Fly-By-Wire Aircraft Facts History Pictures and Information". www.aviationexplorer.com. Retrieved 13 October 2016.
  25. Federal Aviation Administration (29 June 2001). "Full Authority Digital Engine Control" (PDF). Compliance Criteria For 14 CFR §33.28, Aircraft Engines, Electrical And Electronic Engine Control Systems. Archived (PDF) from the original on 24 June 2020. Retrieved 3 January 2022.
  26. 26.0 26.1 Norris, Guy (5 September 2016). "Embraer E2 Certification Tests Set to Accelerate". Aviation Week & Space Technology. Aviation Week. Retrieved 6 September 2016.
  27. "Air France 447 Flight-Data Recorder Transcript – What Really Happened Aboard Air France 447". Popular Mechanics. 6 December 2011. Retrieved 7 July 2012.
  28. Briere D. and Traverse, P. (1993) "Airbus A320/A330/A340 Electrical Flight Controls: A Family of Fault-Tolerant Systems Archived 27 March 2009 at the Wayback Machine" Proc. FTCS, pp. 616–623.
  29. North, David. (2000) "Finding Common Ground in Envelope Protection Systems". Aviation Week & Space Technology, 28 Aug, pp. 66–68.
  30. Le Tron, X. (2007) A380 Flight Control Overview Presentation at Hamburg University of Applied Sciences, 27 September 2007
  31. Klinar, Walter J.; Saldana, Rudolph L.; Kubiak, Edward T.; Smith, Emery E.; Peters, William H.; Stegall, Hansel W. (1 August 1975). "Space Shuttle Flight Control System". IFAC Proceedings Volumes (in English). 8 (1): 302–310. doi:10.1016/S1474-6670(17)67482-2. ISSN 1474-6670.
  32. Ian Moir; Allan G. Seabridge; Malcolm Jukes (2003). Civil Avionics Systems. London (iMechE): Professional Engineering Publishing Ltd. ISBN 1-86058-342-3.
  33. "C-17 Globemaster III Archives". Air & Space Forces Magazine (in English). Retrieved 29 January 2023.
  34. "Pilot Report On Falcon 7X Fly-By-Wire Control System". Aviation Week & Space Technology. 3 May 2010.
  35. "Japans P1 leads defence export drive". www.iiss.org. Retrieved 24 April 2018.
  36. "A350 XWB family & technologies" (PDF).
  37. ""Fly-by-Wireless": A Revolution in Aerospace Vehicle Architecture for Instrumentation and Control" (PDF). Archived (PDF) from the original on 27 November 2021.
  38. Intelligent Flight Control System. IFCS Fact Sheet. NASA. Retrieved 8 June 2011.
  39. Flying Magazine Fly by Wire. "Fly by Wire: Fact versus Science Fiction". Flying Magazine. Retrieved 27 May 2017.


बाहरी संबंध