वॉन न्यूमैन कार्डिनल असाइनमेंट
वॉन न्यूमैन कार्डिनल असाइनमेंट एक कार्डिनल असाइनमेंट है जो क्रमिक संख्याओं का उपयोग करता है। एक सुव्यवस्थित सेट 'यू' के लिए, हम एक क्रमिक संख्या की वॉन न्यूमैन परिभाषा का उपयोग करते हुए, इसकी कार्डिनल संख्या को 'यू' के लिए सबसे छोटी क्रमिक संख्या समतुल्यता के रूप में परिभाषित करते हैं। उचित रूप से:
जहां पर अध्यादेशों का वर्ग (सेट सिद्धांत) है। इस अध्यादेश को कार्डिनल का प्रारंभिक क्रमसूचक भी कहा जाता है।
इस प्रकार का एक क्रमसूचक उपस्थित है और अद्वितीय है, इस तथ्य का आश्वासन है कि 'यू' अच्छी तरह से आदेश देने योग्य है और प्रतिस्थापन के स्वयंसिद्ध का उपयोग करते हुए अध्यादेशों की श्रेणी अच्छी तरह से आदेशित है। पूर्ण विकल्प के स्वयंसिद्ध के साथ, प्रत्येक सेट अच्छी तरह से व्यवस्थित होता है, इसलिए प्रत्येक सेट में एक कार्डिनल होता है; हम क्रमिक संख्याओं से विरासत में मिले क्रम का उपयोग करके कार्डिनल्स को आदेश देते हैं। यह आसानी से ≤c के माध्यम से आदेश के साथ मेल खाता है। यह कार्डिनल नंबरों का एक सुव्यवस्थित क्रम है।
वॉन न्यूमैन कार्डिनल असाइनमेंट एक कार्डिनल असाइनमेंट है जो क्रमिक संख्याओं का उपयोग करता है। एक सुव्यवस्थित सेट 'यू' के लिए, हम एक क्रमिक संख्या की वॉन न्यूमैन परिभाषा का उपयोग करते हुए,
एक कार्डिनल का प्रारंभिक क्रम
प्रत्येक क्रमसूचक का एक संबंधित कार्डिनल नंबर होता है, इसकी प्रमुखता, केवल आदेश को भूल कर प्राप्त की जाती है। किसी भी सुव्यवस्थित सेट में उसके क्रम प्रकार के रूप में एक ही कार्डिनैलिटी होती है। किसी दिए गए कार्डिनल को उसकी कार्डिनल के रूप में रखने वाले सबसे छोटे क्रम को उस कार्डिनल का प्रारंभिक क्रम कहा जाता है। प्रत्येक परिमित क्रमसूचक (प्राकृतिक संख्या) प्रारंभिक है, लेकिन अधिकांश अनंत क्रमांक प्रारंभिक नहीं हैं। पसंद का स्वयंसिद्ध बयान के बराबर है कि प्रत्येक सेट को अच्छी तरह से आदेश दिया जा सकता है, अर्थात प्रत्येक कार्डिनल के पास एक प्रारंभिक क्रमसूचक है। इस मामले में, कार्डिनल नंबर को उसके प्रारंभिक क्रमसूचक के साथ पहचानना पारंपरिक है, और हम कहते हैं कि प्रारंभिक क्रमांक एक कार्डिनल है। छ>-वाँ अनंत प्रारम्भिक क्रमसूचक लिखा जाता है . इसकी कार्डिनलिटी लिखी गई है (द -थ एलेफ संख्या)। उदाहरण के लिए, की कार्डिनैलिटी है , जो कि कार्डिनैलिटी भी है , , और एप्सिलॉन नंबर (गणित) |(सभी गणनीय सेट अध्यादेश हैं)। इसलिए हम पहचान करते हैं साथ , सिवाय इसके कि अंकन कार्डिनल लिखने के लिए प्रयोग किया जाता है, और अध्यादेश लिखने के लिए। यह महत्वपूर्ण है क्योंकि कार्डिनल संख्या # कार्डिनल अंकगणित, उदाहरण के लिए, क्रमिक अंकगणित से भिन्न है = जबकि > . भी, सबसे छोटा बेशुमार सेट ऑर्डिनल है (यह देखने के लिए कि यह उपस्थित है, प्राकृतिक संख्याओं के अच्छी तरह से क्रम के तुल्यता वर्गों के सेट पर विचार करें; इस तरह का प्रत्येक क्रम एक गणनीय क्रमसूचक को परिभाषित करता है, और उस सेट का ऑर्डर प्रकार है), सबसे छोटा क्रमसूचक है जिसकी कार्डिनैलिटी से अधिक है , और इतने पर, और की सीमा है प्राकृतिक संख्या के लिए (कार्डिनल की कोई भी सीमा एक कार्डिनल है, इसलिए यह सीमा वास्तव में सभी के बाद पहला कार्डिनल है ).
अनंत प्रारंभिक अध्यादेश सीमा क्रमसूचक हैं। क्रमिक अंकगणित का उपयोग करना, तात्पर्य , और 1 ≤ α < ωβ मतलब α · ωβ = ओβ, और 2 ≤ α < ωβ तात्पर्य αωβ</सुप> = ओβ. Veblen फ़ंक्शन का उपयोग करना, β ≠ 0 और α < ωβ मतलब और जीωβ</उप> = ओ उप>β</उप>। वास्तव में, कोई इससे बहुत आगे जा सकता है। तो एक क्रमसूचक के रूप में, एक अनंत प्रारंभिक क्रमसूचक एक अत्यंत मजबूत प्रकार की सीमा है।
यह भी देखें
- अलेफ संख्या
संदर्भ
- Y.N. Moschovakis Notes on Set Theory (1994 Springer) p. 198