रैंक (अंतर टोपोलॉजी)
गणित में अवकलनीय मानचित्र की कोटि एक बिंदु पर अलग-अलग कई गुना के बीच के आगे करना (अंतर) का रैंक (रैखिक बीजगणित) है पर . स्मरण करो कि व्युत्पन्न पर एक रेखीय मानचित्र है।
p पर स्पर्शरेखा स्थान से f (p) पर स्पर्शरेखा स्थान पर वेक्टर रिक्त स्थान के बीच रैखिक मानचित्र के रूप में इसकी एक अच्छी तरह से परिभाषित रैंक है, जो t में छवि (गणित) का आयाम है Tf(p)N है।
लगातार रैंक मैप्स
अवकलनीय मानचित्र f : M → N को 'निरंतर रैंक' कहा जाता है यदि f का रैंक M में सभी p के लिए समान है। निरंतर रैंक मानचित्रों में कई अच्छे गुण होते हैं और अंतर टोपोलॉजी में एक महत्वपूर्ण अवधारणा है।
निरंतर रैंक मैप्स के तीन विशेष स्थितियों होती हैं। एक स्थिर कोटि मानचित्र f : M → N है।
- विसर्जन (गणित) यदि रैंक f = मंद m (यानी व्युत्पन्न हर जगह इंजेक्शन है),
- निमज्जन (गणित) यदि कोटि f = मंद N (अर्थात् व्युत्पन्न हर जगह विशेषण है),
- स्थानीय भिन्नता यदि रैंक f = मंद M = मंद N (यानी व्युत्पन्न हर जगह विशेषण है)।
इन शर्तों को धारण करने के लिए नक्शा f को इंजेक्शन, विशेषण या विशेषण की आवश्यकता नहीं है, केवल व्युत्पन्न का व्यवहार महत्वपूर्ण है। उदाहरण के लिए, इंजेक्शन वाले मानचित्र हैं जो विसर्जन नहीं हैं और विसर्जन जो इंजेक्शन नहीं हैं। चुकीं, यदि f : M → N निरंतर रैंक का एक सुगम मानचित्र है, तो
- यदि f अंतःक्षेपी है तो यह विसर्जन है।
- यदि f आच्छादक है तो यह एक निमज्जन है।
- यदि f आच्छादक है तो यह एक भिन्नता है।
स्थानीय निर्देशांक के संदर्भ में लगातार रैंक मानचित्रों का अच्छा वर्णन है। मान लीजिए m और n क्रमशः आयाम m और n के चिकनी कई गुना हैं, और f: m → n निरंतर रैंक के साथ एक चिकनी मानचित्र है। फिर m में सभी p के लिए निर्देशांक उपस्थित हैं (x1</सुप>, ..., एक्सm) p पर केंद्रित है और निर्देशांक (y1, ..., औरn) f(p) पर केंद्रित है जैसे कि f द्वारा दिया गया है ।
उदाहरण
मानचित्र जिनकी रैंक सामान्य रूप से अधिकतम है, लेकिन कुछ एकवचन बिंदुओं पर गिरती है, समन्वय प्रणालियों में अधिकांशतः होती हैं। उदाहरण के लिए, गोलीय निर्देशांक में, मानचित्र की रैंक दो कोणों से गोले पर एक बिंदु तक (औपचारिक रूप से, एक नक्शा T2 → s2 धार से गोले तक) नियमित बिंदुओं पर 2 है, लेकिन उत्तरी और दक्षिणी ध्रुवों पर केवल 1 है (आंचल और दुर्लभ)।
SO(3), रोटेशन समूह SO(3) पर चार्ट में एक सूक्ष्म उदाहरण होता है। यह समूह इंजीनियरिंग में व्यापक रूप से होता है, कई अन्य उपयोगों के बीच मार्गदर्शन, समुद्री इंजीनियरिंग और अंतरिक्ष इंजिनीयरिंग में 3-आयामी घुमावों का अत्यधिक उपयोग होने के कारण। सामयिक रूप से, SO(3) वास्तविक प्रक्षेपी स्थान RP3 है, और यह अधिकांशतः तीन संख्याओं के एक सेट द्वारा घुमावों का प्रतिनिधित्व करने के लिए वांछनीय होता है, जिसे यूलर कोण (कई रूपों में) के रूप में जाना जाता है, क्योंकि यह अवधारणात्मक रूप से सरल है, और क्योंकि कोई उत्पादन करने के लिए तीन गिंबल्स के संयोजन का निर्माण कर सकता है तीन आयामों में घुमाव। स्थलाकृतिक रूप से यह 3-टोरस T3से मानचित्र के अनुरूप हैवास्तविक प्रक्षेप्य स्थान RP के लिए तीन कोणों का घुमाव, लेकिन इस मानचित्र में सभी बिंदुओं पर रैंक 3 नहीं है (औपचारिक रूप से क्योंकि यह कवरिंग मानचित्र नहीं हो सकता है, क्योंकि एकमात्र (गैर-तुच्छ) कवरिंग स्पेस हाइपरस्फीयर S3 है), और कुछ बिंदुओं पर रैंक के 2 तक गिरने की घटना को इंजीनियरिंग में जिम्बल लॉक के रूप में संदर्भित किया जाता है।
संदर्भ
- Lee, John (2003). Introduction to Smooth Manifolds. Graduate Texts in Mathematics 218. New York: Springer. ISBN 978-0-387-95495-0.