बहुस्तरीय मॉडल

From Vigyanwiki
Revision as of 00:59, 25 February 2023 by alpha>Indicwiki (Created page with "{{Short description|Statistical models of parameters that vary at more than one level}} {{Use dmy dates|date=April 2019}} {{Regression bar}} बहुस्तरीय म...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

बहुस्तरीय मॉडल (जिन्हें पदानुक्रमित रैखिक मॉडल, रैखिक मिश्रित-प्रभाव मॉडल, मिश्रित मॉडल, नेस्टेड डेटा मॉडल, यादृच्छिक गुणांक, यादृच्छिक-प्रभाव मॉडल, यादृच्छिक पैरामीटर मॉडल या स्प्लिट-प्लॉट डिज़ाइन के रूप में भी जाना जाता है) पैरामीटर के सांख्यिकीय मॉडल हैं जो भिन्न होते हैं अधिक एक से अधिक स्तर।[1]एक उदाहरण छात्र के प्रदर्शन का एक मॉडल हो सकता है जिसमें व्यक्तिगत छात्रों के लिए उपाय शामिल हैं और साथ ही उन कक्षाओं के लिए भी उपाय हैं जिनमें छात्रों को समूहीकृत किया गया है। इन मॉडलों को रैखिक मॉडल (विशेष रूप से, रैखिक प्रतिगमन) के सामान्यीकरण के रूप में देखा जा सकता है, हालांकि वे गैर-रैखिक मॉडल तक भी विस्तारित हो सकते हैं। पर्याप्त कंप्यूटिंग शक्ति और सॉफ्टवेयर उपलब्ध होने के बाद ये मॉडल और अधिक लोकप्रिय हो गए।[1]

बहुस्तरीय मॉडल अनुसंधान डिजाइनों के लिए विशेष रूप से उपयुक्त होते हैं जहां प्रतिभागियों के लिए डेटा एक से अधिक स्तरों (यानी, नेस्टेड डेटा) पर व्यवस्थित होते हैं।[2] विश्लेषण की इकाइयाँ आमतौर पर व्यक्ति (निचले स्तर पर) होती हैं जो प्रासंगिक/कुल इकाइयों (उच्च स्तर पर) के भीतर स्थित होती हैं।[3] जबकि बहुस्तरीय मॉडल में डेटा का निम्नतम स्तर आमतौर पर एक व्यक्ति होता है, व्यक्तियों के बार-बार माप की भी जांच की जा सकती है।[2][4] जैसे, बहुस्तरीय मॉडल दोहराए गए उपायों के एकतरफा या बहुभिन्नरूपी विश्लेषण के लिए एक वैकल्पिक प्रकार का विश्लेषण प्रदान करते हैं। विकास वक्र (सांख्यिकी) में व्यक्तिगत अंतर की जांच की जा सकती है।[2]इसके अलावा, बहुस्तरीय मॉडल का उपयोग एएनसीओवीए के विकल्प के रूप में किया जा सकता है, जहां निर्भर चर पर स्कोर उपचार मतभेदों का परीक्षण करने से पहले कोवरिएट्स (जैसे व्यक्तिगत मतभेद) के लिए समायोजित किए जाते हैं।[5] बहुस्तरीय मॉडल इन प्रयोगों का विश्लेषण एकरूपता-प्रतिगमन ढलानों की मान्यताओं के बिना कर सकते हैं जो ANCOVA द्वारा आवश्यक है।[2]

बहुस्तरीय मॉडल का उपयोग कई स्तरों वाले डेटा पर किया जा सकता है, हालांकि 2-स्तरीय मॉडल सबसे आम हैं और इस लेख के बाकी हिस्से केवल इनसे संबंधित हैं। निर्भर चर की जांच विश्लेषण के निम्नतम स्तर पर की जानी चाहिए।[1]


स्तर 1 प्रतिगमन समीकरण

जब एक एकल स्तर 1 स्वतंत्र चर होता है, तो स्तर 1 मॉडल होता है:

  • स्तर 1 पर एक व्यक्तिगत अवलोकन के लिए निर्भर चर पर स्कोर को संदर्भित करता है (सबस्क्रिप्ट i व्यक्तिगत मामले को संदर्भित करता है, सबस्क्रिप्ट j समूह को संदर्भित करता है)।
  • स्तर 1 भविष्यवक्ता को संदर्भित करता है।
  • व्यक्तिगत मामले i के लिए आश्रित चर के अवरोधन को संदर्भित करता है।
  • स्तर 1 पूर्वसूचक और आश्रित चर के बीच समूह j (स्तर 2) में संबंध के लिए व्यक्तिगत मामले i के लिए ढलान को संदर्भित करता है।
  • स्तर 1 समीकरण के लिए भविष्यवाणी की यादृच्छिक त्रुटियों को संदर्भित करता है (इसे कभी-कभी ).

स्तर 1 पर, समूहों में अवरोधन और ढलान दोनों को या तो तय किया जा सकता है (जिसका अर्थ है कि सभी समूहों के समान मूल्य हैं, हालांकि वास्तविक दुनिया में यह एक दुर्लभ घटना होगी), गैर-यादृच्छिक रूप से भिन्न (जिसका अर्थ है कि अवरोधन और/ या ढलान स्तर 2 पर एक स्वतंत्र चर से अनुमानित हैं), या यादृच्छिक रूप से भिन्न होते हैं (जिसका अर्थ है कि अलग-अलग समूहों में अवरोधन और/या ढलान अलग-अलग हैं, और प्रत्येक का अपना समग्र औसत और भिन्नता है)।[2][4]

जब कई स्तर 1 स्वतंत्र चर होते हैं, तो समीकरण में वैक्टर और मैट्रिक्स को प्रतिस्थापित करके मॉडल का विस्तार किया जा सकता है।

जब प्रतिक्रिया के बीच संबंध और भविष्यवक्ता रैखिक संबंध द्वारा वर्णित नहीं किया जा सकता है, तो कोई प्रतिक्रिया और पूर्वसूचक के बीच कुछ गैर रेखीय कार्यात्मक संबंध पा सकता है, और मॉडल को गैर-रैखिक मिश्रित-प्रभाव मॉडल तक बढ़ा सकता है। उदाहरण के लिए, जब प्रतिक्रिया का संचयी संक्रमण प्रक्षेपवक्र है -वें देश, और का प्रतिनिधित्व करता है -वाँ समय बिंदु, फिर क्रमित युग्म प्रत्येक देश के लिए रसद समारोह के समान आकार दिखा सकता है।[6][7]


स्तर 2 प्रतिगमन समीकरण

आश्रित चर स्तर 2 के समूहों में स्तर 1 पर स्वतंत्र चर के लिए अवरोधन और ढलान हैं।

  • समग्र अवरोधन को संदर्भित करता है। यह सभी समूहों में आश्रित चर पर प्राप्तांकों का भव्य माध्य है जब सभी भविष्यवक्ता 0 के बराबर होते हैं।
  • आश्रित चर और स्तर 2 भविष्यवक्ता के बीच समग्र प्रतिगमन गुणांक या ढलान को संदर्भित करता है।
  • समग्र अवरोधन से केस i के विचलन को संदर्भित करता है।
  • आश्रित चर और स्तर 1 भविष्यवक्ता के बीच समग्र प्रतिगमन गुणांक या ढलान को संदर्भित करता है।

मॉडल के प्रकार

बहुस्तरीय मॉडल विश्लेषण करने से पहले, एक शोधकर्ता को कई पहलुओं पर निर्णय लेना चाहिए, जिसमें भविष्यवाणियों को विश्लेषण में शामिल किया जाना है, यदि कोई हो। दूसरा, शोधकर्ता को यह तय करना होगा कि क्या पैरामीटर मान (अर्थात, जिन तत्वों का अनुमान लगाया जाएगा) निश्चित या यादृच्छिक होंगे।[2][5][4]निश्चित पैरामीटर सभी समूहों पर एक स्थिरांक से बने होते हैं, जबकि एक यादृच्छिक पैरामीटर का प्रत्येक समूह के लिए एक अलग मान होता है।[4]इसके अतिरिक्त, शोधकर्ता को यह तय करना होगा कि अधिकतम संभावना अनुमान या प्रतिबंधित अधिकतम संभावना अनुमान प्रकार को नियोजित करना है या नहीं।[2]


रैंडम इंटरसेप्ट मॉडल

एक यादृच्छिक इंटरसेप्ट्स मॉडल एक मॉडल है जिसमें इंटरसेप्ट्स को अलग-अलग करने की अनुमति दी जाती है, और इसलिए, प्रत्येक व्यक्तिगत अवलोकन के लिए निर्भर चर पर स्कोर का अनुमान उस इंटरसेप्ट द्वारा लगाया जाता है जो समूहों में भिन्न होता है।[5][8][4]यह मॉडल मानता है कि ढलान निश्चित हैं (विभिन्न संदर्भों में समान)। इसके अलावा, यह मॉडल इंट्राक्लास सहसंबंधों के बारे में जानकारी प्रदान करता है, जो यह निर्धारित करने में सहायक होते हैं कि बहुस्तरीय मॉडल पहले स्थान पर आवश्यक हैं या नहीं।[2]


यादृच्छिक ढलान मॉडल

एक यादृच्छिक ढलान मॉडल एक मॉडल है जिसमें ढलानों को सहसंबंध मैट्रिक्स के अनुसार अलग-अलग करने की अनुमति दी जाती है, और इसलिए, ढलान समूह चर जैसे समय या व्यक्तियों में भिन्न होते हैं। यह मॉडल मानता है कि इंटरसेप्ट निश्चित हैं (विभिन्न संदर्भों में समान)।[5]


रैंडम इंटरसेप्ट और स्लोप मॉडल

एक मॉडल जिसमें यादृच्छिक अवरोधन और यादृच्छिक ढलान दोनों शामिल हैं, संभवतः सबसे यथार्थवादी प्रकार का मॉडल है, हालांकि यह सबसे जटिल भी है। इस मॉडल में, इंटरसेप्ट और स्लोप दोनों को समूहों में अलग-अलग होने की अनुमति है, जिसका अर्थ है कि वे अलग-अलग संदर्भों में अलग-अलग हैं।[5]


एक बहुस्तरीय मॉडल का विकास

एक बहुस्तरीय मॉडल विश्लेषण करने के लिए, एक निश्चित गुणांक (ढलान और अवरोधन) के साथ शुरू होगा। बेहतर मॉडल फिट का आकलन करने के लिए एक पहलू को एक समय में भिन्न होने की अनुमति दी जाएगी (अर्थात, बदल दिया जाएगा), और पिछले मॉडल के साथ तुलना की जाएगी।[1]तीन अलग-अलग प्रश्न हैं जो एक शोधकर्ता एक मॉडल का आकलन करने में पूछेगा। सबसे पहले, क्या यह एक अच्छा मॉडल है? दूसरा, क्या अधिक जटिल मॉडल बेहतर है? तीसरा, व्यक्तिगत भविष्यवक्ताओं का मॉडल में क्या योगदान है?

मॉडलों का आकलन करने के लिए, विभिन्न मॉडल फिट आंकड़ों की जांच की जाएगी।[2]ऐसा ही एक आँकड़ा ची-स्क्वायर संभावना-अनुपात परीक्षण है, जो मॉडलों के बीच अंतर का आकलन करता है। संभावना-अनुपात परीक्षण सामान्य रूप से मॉडल निर्माण के लिए नियोजित किया जा सकता है, यह जांचने के लिए कि क्या होता है जब किसी मॉडल में प्रभावों को अलग-अलग करने की अनुमति दी जाती है, और जब एक डमी-कोडेड श्रेणीबद्ध चर का परीक्षण एक प्रभाव के रूप में किया जाता है।[2]हालांकि, परीक्षण का उपयोग केवल तभी किया जा सकता है जब मॉडल सांख्यिकीय मॉडल # नेस्टेड मॉडल हों (जिसका अर्थ है कि अधिक जटिल मॉडल में सरल मॉडल के सभी प्रभाव शामिल हैं)। गैर-नेस्टेड मॉडल का परीक्षण करते समय, मॉडल के बीच तुलना एकैके सूचना मानदंड (एआईसी) या बायेसियन सूचना मानदंड (बीआईसी) का उपयोग करके की जा सकती है।[1][2][5] आगे मॉडल चयन देखें।

अनुमान

बहुस्तरीय मॉडल में अन्य प्रमुख सामान्य रैखिक मॉडल (जैसे, एनोवा, रैखिक प्रतिगमन मॉडल) के समान धारणाएं होती हैं, लेकिन कुछ मान्यताओं को डिजाइन की श्रेणीबद्ध प्रकृति (यानी, नेस्टेड डेटा) के लिए संशोधित किया जाता है।

रैखिकता
Linearity Graphs.jpg

रैखिकता की धारणा बताती है कि चर के बीच एक सीधा (सीधी-रेखा, गैर-रैखिक या यू-आकार के विपरीत) संबंध है।[9]हालाँकि, मॉडल को गैर-रैखिक संबंधों तक बढ़ाया जा सकता है।[10] विशेष रूप से, जब स्तर 1 प्रतिगमन समीकरण के माध्य भाग को एक गैर-रेखीय पैरामीट्रिक फ़ंक्शन के साथ बदल दिया जाता है, तो ऐसे मॉडल ढांचे को व्यापक रूप से गैर-रैखिक मिश्रित-प्रभाव मॉडल कहा जाता है।[7]

सामान्यता सामान्यता की धारणा बताती है कि मॉडल के प्रत्येक स्तर पर त्रुटि की शर्तें सामान्य रूप से वितरित की जाती हैं।[9][disputed ]. हालांकि, अधिकांश सांख्यिकीय सॉफ़्टवेयर किसी को विचरण शर्तों के लिए अलग-अलग वितरण निर्दिष्ट करने की अनुमति देता है, जैसे पॉसॉन, द्विपद, रसद। बहुस्तरीय मॉडलिंग दृष्टिकोण का उपयोग सामान्यीकृत रैखिक मॉडल के सभी रूपों के लिए किया जा सकता है।

होमोसेडैसिटी समरूपता की धारणा, जिसे विचरण की एकरूपता के रूप में भी जाना जाता है, जनसंख्या प्रसरण की समानता को मानती है।[9]हालाँकि, इसके लिए अलग-अलग विचरण-सहसंबंध मैट्रिक्स को निर्दिष्ट किया जा सकता है, और विचरण की विषमता को स्वयं प्रतिरूपित किया जा सकता है।

प्रेक्षणों की स्वतंत्रता (मॉडल के अवशेषों का कोई स्वत: संबंध नहीं) स्वतंत्रता सामान्य रेखीय मॉडल की एक धारणा है, जिसमें कहा गया है कि मामले जनसंख्या से यादृच्छिक नमूने हैं और निर्भर चर पर स्कोर एक दूसरे से स्वतंत्र हैं।[9] बहुस्तरीय मॉडल के मुख्य उद्देश्यों में से एक उन मामलों से निपटना है जहां स्वतंत्रता की धारणा का उल्लंघन होता है; बहुस्तरीय मॉडल, हालांकि, मानते हैं कि 1) स्तर 1 और स्तर 2 अवशिष्ट असंबद्ध हैं और 2) उच्चतम स्तर पर त्रुटियाँ (अवशिष्टों द्वारा मापी गई) असंबद्ध हैं।[11] यादृच्छिक प्रभावों के लिए प्रतिगमनकर्ताओं की रूढ़िवादिता रजिस्टरों को यादृच्छिक प्रभावों से संबंधित नहीं होना चाहिए, . यह धारणा परीक्षण योग्य है लेकिन अक्सर इसे अनदेखा कर दिया जाता है, जिससे अनुमानक असंगत हो जाता है।[12] यदि इस धारणा का उल्लंघन किया जाता है, तो यादृच्छिक-प्रभाव को मॉडल के निश्चित भाग में स्पष्ट रूप से प्रतिरूपित किया जाना चाहिए, या तो डमी चर का उपयोग करके या सभी के क्लस्टर साधनों को शामिल करके प्रतिगामी।[12][13][14][15] यह धारणा शायद सबसे महत्वपूर्ण धारणा है जो अनुमानक बनाता है, लेकिन इस प्रकार के मॉडल का उपयोग करने वाले अधिकांश अनुप्रयुक्त शोधकर्ताओं द्वारा गलत समझा जाता है।[12]


सांख्यिकीय परीक्षण

बहुस्तरीय मॉडलों में उपयोग किए जाने वाले सांख्यिकीय परीक्षणों का प्रकार इस बात पर निर्भर करता है कि कोई निश्चित प्रभाव या भिन्नता घटकों की जांच कर रहा है या नहीं। निश्चित प्रभावों की जांच करते समय, परीक्षणों की तुलना निश्चित प्रभाव की मानक त्रुटि से की जाती है, जिसके परिणामस्वरूप जेड-परीक्षण होता है।[5]एक t- परीक्षण की गणना भी की जा सकती है। टी-टेस्ट की गणना करते समय, स्वतंत्रता की डिग्री को ध्यान में रखना महत्वपूर्ण है, जो भविष्यवक्ता के स्तर पर निर्भर करेगा (उदाहरण के लिए, स्तर 1 भविष्यवक्ता या स्तर 2 भविष्यवक्ता)।[5]स्तर 1 भविष्यवक्ता के लिए, स्वतंत्रता की डिग्री स्तर 1 भविष्यवक्ताओं की संख्या, समूहों की संख्या और व्यक्तिगत टिप्पणियों की संख्या पर आधारित होती है। स्तर 2 भविष्यवक्ता के लिए, स्वतंत्रता की डिग्री स्तर 2 भविष्यवक्ताओं की संख्या और समूहों की संख्या पर आधारित होती है।[5]

मैं अपने साथियों को ठीक करता हूं

सांख्यिकीय शक्ति

बहुस्तरीय मॉडलों के लिए सांख्यिकीय शक्ति इस आधार पर भिन्न होती है कि क्या यह स्तर 1 या स्तर 2 प्रभाव है जिसकी जांच की जा रही है। स्तर 1 प्रभावों की शक्ति व्यक्तिगत अवलोकनों की संख्या पर निर्भर है, जबकि स्तर 2 प्रभावों की शक्ति समूहों की संख्या पर निर्भर है।[16] पर्याप्त शक्ति के साथ अनुसंधान करने के लिए, बहुस्तरीय मॉडल में बड़े नमूना आकार की आवश्यकता होती है। हालाँकि, समूहों में व्यक्तिगत टिप्पणियों की संख्या उतनी महत्वपूर्ण नहीं है जितनी कि एक अध्ययन में समूहों की संख्या। क्रॉस-लेवल इंटरैक्शन का पता लगाने के लिए, यह देखते हुए कि समूह का आकार बहुत छोटा नहीं है, अनुशंसा की गई है कि कम से कम 20 समूहों की आवश्यकता है,[16]हालांकि बहुत कम का उपयोग किया जा सकता है यदि कोई केवल निश्चित प्रभावों पर अनुमान लगाने में रुचि रखता है और यादृच्छिक प्रभाव नियंत्रण, या उपद्रव, चर हैं।[4]बहुस्तरीय मॉडलों में सांख्यिकीय शक्ति का मुद्दा इस तथ्य से जटिल है कि शक्ति प्रभाव आकार और इंट्राक्लास सहसंबंधों के कार्य के रूप में भिन्न होती है, यह निश्चित प्रभावों बनाम यादृच्छिक प्रभावों के लिए भिन्न होती है, और यह समूहों की संख्या और व्यक्तिगत टिप्पणियों की संख्या के आधार पर बदलती है। प्रति समूह।[16]


अनुप्रयोग

स्तर

स्तर की अवधारणा इस दृष्टिकोण की कुंजी है। शैक्षिक अनुसंधान उदाहरण में, 2-स्तरीय मॉडल के स्तर हो सकते हैं:

  1. छात्र
  2. कक्षा

हालाँकि, यदि कोई कई स्कूलों और कई स्कूल जिलों का अध्ययन कर रहा है, तो एक 4-स्तरीय मॉडल हो सकता है:

  1. छात्र
  2. कक्षा
  3. विद्यालय
  4. ज़िला

शोधकर्ता को प्रत्येक चर (गणित) के लिए उस स्तर को स्थापित करना चाहिए जिस पर इसे मापा गया था। इस उदाहरण में टेस्ट स्कोर को छात्र स्तर पर, शिक्षक के अनुभव को कक्षा स्तर पर, स्कूल फंडिंग को स्कूल स्तर पर और शहरी स्तर पर जिला स्तर पर मापा जा सकता है।

उदाहरण

एक सरल उदाहरण के रूप में, एक बुनियादी रेखीय प्रतिगमन मॉडल पर विचार करें जो आयु, वर्ग, लिंग और जाति के कार्य के रूप में आय की भविष्यवाणी करता है। तब यह देखा जा सकता है कि शहर और निवास की स्थिति के आधार पर आय का स्तर भी भिन्न होता है। प्रतिगमन मॉडल में इसे शामिल करने का एक सरल तरीका स्थान के लिए खाते में एक अतिरिक्त स्वतंत्र चर श्रेणीगत चर जोड़ना होगा (यानी अतिरिक्त बाइनरी भविष्यवक्ताओं का एक सेट और संबंधित प्रतिगमन गुणांक, प्रति स्थान एक)। इसका औसत आय को ऊपर या नीचे स्थानांतरित करने का प्रभाव होगा - लेकिन यह अभी भी मान लेगा, उदाहरण के लिए, आय पर जाति और लिंग का प्रभाव हर जगह समान है। वास्तव में, ऐसा होने की संभावना नहीं है - विभिन्न स्थानीय कानूनों, विभिन्न सेवानिवृत्ति नीतियों, नस्लीय पूर्वाग्रह के स्तर में अंतर, आदि के कारण सभी भविष्यवक्ताओं के विभिन्न स्थानों में विभिन्न प्रकार के प्रभाव होने की संभावना है।

दूसरे शब्दों में, एक साधारण रेखीय प्रतिगमन मॉडल, उदाहरण के लिए, भविष्यवाणी कर सकता है कि सिएटल में यादृच्छिक रूप से चुने गए व्यक्ति की औसत वार्षिक आय मोबाइल, अलबामा में एक समान व्यक्ति की तुलना में $10,000 अधिक होगी। हालांकि, यह भी भविष्यवाणी करेगा, उदाहरण के लिए, कि एक श्वेत व्यक्ति की औसत आय एक अश्वेत व्यक्ति के ऊपर $7,000 हो सकती है, और एक 65 वर्षीय व्यक्ति की आय 45 वर्षीय व्यक्ति से कम $3,000 हो सकती है, चाहे दोनों ही मामलों में जगह। एक बहुस्तरीय मॉडल, हालांकि, प्रत्येक स्थान में प्रत्येक भविष्यवक्ता के लिए अलग-अलग प्रतिगमन गुणांक की अनुमति देगा। अनिवार्य रूप से, यह माना जाएगा कि किसी दिए गए स्थान के लोगों ने प्रतिगमन गुणांक के एक सेट द्वारा उत्पन्न आय को सहसंबद्ध किया है, जबकि दूसरे स्थान के लोगों को गुणांक के एक अलग सेट द्वारा उत्पन्न आय है। इस बीच, गुणांकों को स्वयं सहसंबद्ध माना जाता है और हाइपरपरमेटर्स के एक सेट से उत्पन्न होता है। अतिरिक्त स्तर संभव हैं: उदाहरण के लिए, लोगों को शहरों द्वारा समूहीकृत किया जा सकता है, और राज्य द्वारा समूहित शहर-स्तरीय प्रतिगमन गुणांक, और एकल हाइपर-hyperparameter से उत्पन्न राज्य-स्तरीय गुणांक।

बहुस्तरीय मॉडल पदानुक्रमित बायेसियन मॉडल का एक उपवर्ग है, जो विभिन्न चर के बीच कई स्तरों के यादृच्छिक चर और मनमाने संबंधों के साथ सामान्य मॉडल हैं। बहुस्तरीय संरचनात्मक समीकरण मॉडलिंग, बहुस्तरीय अव्यक्त वर्ग मॉडलिंग और अन्य सामान्य मॉडलों को शामिल करने के लिए बहुस्तरीय विश्लेषण का विस्तार किया गया है।

उपयोग

शिक्षा अनुसंधान या भौगोलिक अनुसंधान में एक ही स्कूल के विद्यार्थियों के बीच अंतर और स्कूलों के बीच अंतर का अनुमान लगाने के लिए बहुस्तरीय मॉडल का उपयोग किया गया है। मनोवैज्ञानिक अनुप्रयोगों में, कई स्तर एक उपकरण, व्यक्तियों और परिवारों में आइटम होते हैं। समाजशास्त्रीय अनुप्रयोगों में, बहुस्तरीय मॉडलों का उपयोग क्षेत्रों या देशों के भीतर सन्निहित व्यक्तियों की जांच के लिए किया जाता है। औद्योगिक और संगठनात्मक मनोविज्ञान अनुसंधान में, व्यक्तियों के डेटा को अक्सर टीमों या अन्य कार्यात्मक इकाइयों के भीतर नेस्ट किया जाना चाहिए। वे अक्सर पारिस्थितिक अनुसंधान के साथ-साथ अधिक सामान्य शब्द मिश्रित मॉडल के तहत उपयोग किए जाते हैं।[4]

अलग-अलग स्तरों पर अलग-अलग सहसंयोजक प्रासंगिक हो सकते हैं। उनका उपयोग अनुदैर्ध्य अध्ययनों के लिए किया जा सकता है, जैसा कि विकास अध्ययनों के साथ, एक व्यक्ति के भीतर परिवर्तन और व्यक्तियों के बीच मतभेदों को अलग करने के लिए।

क्रॉस-लेवल इंटरैक्शन भी महत्वपूर्ण रुचि के हो सकते हैं; उदाहरण के लिए, जब एक ढलान को बेतरतीब ढंग से बदलने की अनुमति दी जाती है, तो स्तर -1 कोवरिएट के लिए ढलान सूत्र में एक स्तर -2 भविष्यवक्ता शामिल किया जा सकता है। उदाहरण के लिए, एक व्यक्ति की विशेषताओं और सामाजिक संदर्भ के बीच बातचीत का अनुमान प्राप्त करने के लिए जाति और पड़ोस की बातचीत का अनुमान लगाया जा सकता है।

अनुदैर्ध्य (दोहराए गए उपाय) डेटा के लिए आवेदन

पदानुक्रमित डेटा का विश्लेषण करने के वैकल्पिक तरीके

पदानुक्रमित डेटा का विश्लेषण करने के कई वैकल्पिक तरीके हैं, हालांकि उनमें से अधिकांश में कुछ समस्याएं हैं। सबसे पहले, पारंपरिक सांख्यिकीय तकनीकों का उपयोग किया जा सकता है। कोई उच्च-क्रम चर को व्यक्तिगत स्तर पर अलग कर सकता है, और इस प्रकार इस व्यक्तिगत स्तर पर विश्लेषण कर सकता है (उदाहरण के लिए, व्यक्तिगत स्तर पर वर्ग चर निर्दिष्ट करें)। इस दृष्टिकोण के साथ समस्या यह है कि यह स्वतंत्रता की धारणा का उल्लंघन करेगा, और इस प्रकार हमारे परिणामों को पूर्वाग्रहित कर सकता है। इसे एटमॉस्टिक फॉलसी के रूप में जाना जाता है।[17] पारंपरिक सांख्यिकीय दृष्टिकोण का उपयोग करके डेटा का विश्लेषण करने का एक अन्य तरीका व्यक्तिगत स्तर के चर को उच्च-क्रम के चर में एकत्र करना और फिर इस उच्च स्तर पर विश्लेषण करना है। इस दृष्टिकोण के साथ समस्या यह है कि यह समूह के भीतर की सभी सूचनाओं को छोड़ देता है (क्योंकि यह व्यक्तिगत स्तर के चर का औसत लेता है)। जितना 80-90% विचरण व्यर्थ हो सकता है, और कुल चर के बीच संबंध फुलाया जाता है, और इस प्रकार विकृत होता है।[18] इसे पारिस्थितिक भ्रम के रूप में जाना जाता है, और सांख्यिकीय रूप से, इस प्रकार के विश्लेषण के परिणामस्वरूप सूचना की हानि के अलावा शक्ति में कमी आती है।[2]

पदानुक्रमित डेटा का विश्लेषण करने का एक अन्य तरीका एक यादृच्छिक-गुणांक मॉडल के माध्यम से होगा। यह मॉडल मानता है कि प्रत्येक समूह का एक अलग प्रतिगमन मॉडल है - अपने स्वयं के अवरोधन और ढलान के साथ।[5]क्योंकि समूहों का नमूना लिया जाता है, मॉडल मानता है कि इंटरसेप्ट्स और ढलानों को समूह इंटरसेप्ट्स और ढलानों की आबादी से यादृच्छिक रूप से नमूना लिया जाता है। यह एक विश्लेषण की अनुमति देता है जिसमें कोई यह मान सकता है कि ढलान निश्चित हैं लेकिन इंटरसेप्ट्स को भिन्न होने की अनुमति है।[5]हालाँकि यह एक समस्या प्रस्तुत करता है, क्योंकि व्यक्तिगत घटक स्वतंत्र होते हैं लेकिन समूह घटक समूहों के बीच स्वतंत्र होते हैं, लेकिन समूहों के भीतर निर्भर होते हैं। यह एक ऐसे विश्लेषण की भी अनुमति देता है जिसमें ढलान यादृच्छिक हैं; हालाँकि, त्रुटि शर्तों (गड़बड़ी) के सहसंबंध व्यक्तिगत-स्तर के चर के मूल्यों पर निर्भर हैं।[5]इस प्रकार, पदानुक्रमित डेटा का विश्लेषण करने के लिए एक यादृच्छिक-गुणांक मॉडल का उपयोग करने में समस्या यह है कि उच्च क्रम चर को शामिल करना अभी भी संभव नहीं है।

त्रुटि शर्तें

बहुस्तरीय मॉडलों में दो त्रुटि शब्द होते हैं, जिन्हें गड़बड़ी के रूप में भी जाना जाता है। व्यक्तिगत घटक सभी स्वतंत्र हैं, लेकिन समूह घटक भी हैं, जो समूहों के बीच स्वतंत्र हैं लेकिन समूहों के भीतर सहसंबद्ध हैं। हालाँकि, विचरण घटक भिन्न हो सकते हैं, क्योंकि कुछ समूह दूसरों की तुलना में अधिक सजातीय हैं।[18]


बायेसियन नॉनलाइनियर मिश्रित-प्रभाव मॉडल

बायेसियन गैर-रैखिक मिश्रित प्रभाव मॉडल का उपयोग करके बायेसियन अनुसंधान चक्र: (ए) मानक अनुसंधान चक्र और (बी) बायेसियन-विशिष्ट वर्कफ़्लो [19].

बहुस्तरीय मॉडलिंग का अक्सर विविध अनुप्रयोगों में उपयोग किया जाता है और इसे बायेसियन ढांचे द्वारा तैयार किया जा सकता है। विशेष रूप से, बायेसियन नॉनलाइनियर मिश्रित-प्रभाव वाले मॉडल ने हाल ही में महत्वपूर्ण ध्यान दिया है। बायेसियन गैर-रैखिक मिश्रित-प्रभाव मॉडल का एक मूल संस्करण निम्नलिखित तीन-चरण के रूप में दर्शाया गया है:

स्टेज 1: इंडिविजुअल-लेवल मॉडल

स्टेज 2: जनसंख्या मॉडल

स्टेज 3: प्रायर

यहाँ, की निरंतर प्रतिक्रिया को दर्शाता है समय बिंदु पर -वाँ विषय , और है का -वाँ सहचर -वाँ विषय। मॉडल में शामिल पैरामीटर ग्रीक अक्षरों में लिखे गए हैं। द्वारा परिचालित एक ज्ञात कार्य है -आयामी वेक्टर . आमतौर पर, एक 'अरैखिक' कार्य है और व्यक्तियों के लौकिक प्रक्षेपवक्र का वर्णन करता है। मॉडल में, और क्रमशः व्यक्तिगत परिवर्तनशीलता और बीच-व्यक्तिगत परिवर्तनशीलता का वर्णन करें। यदि स्टेज 3: प्रायर पर विचार नहीं किया जाता है, तो मॉडल एक फ़्रीक्वेंटिस्ट नॉनलाइनियर मिश्रित-प्रभाव वाले मॉडल को कम कर देता है।


बायेसियन नॉनलाइनियर मिश्रित-प्रभाव मॉडल के अनुप्रयोग में एक केंद्रीय कार्य पश्च घनत्व का मूल्यांकन करना है: