संवेग

From Vigyanwiki
Revision as of 14:12, 11 March 2023 by alpha>PreetiSingh
शीघ्रता का मूल्य है artanh(v / c) वेग के लिए v और प्रकाश की गति c

सापेक्षता के सिद्धांत में, सामान्यतः सापेक्षतावादी वेग के लिए माप के रूप में तीव्रता का उपयोग किया जाता है। गणितीय रूप से, तेज़ी को अतिपरवलयिक कोण के रूप में परिभाषित किया जा सकता है। जो सापेक्ष गति में संदर्भ के दो फ़्रेमों को प्रथक करता है। अतः प्रत्येक फ्रेम दूरी और समय निर्देशांक से जुड़ा होता है।

सामान्यतः आयामी गति के लिए, तीव्रता योगात्मक होती है। चूँकि वेग को आइंस्टीन के वेग-जोड़ सूत्र द्वारा संयोजित किया जाता है। अतः कम गति के लिए, तेज़ी और वेग आनुपातिक होते हैं, किन्तु उच्च वेग के लिए, तेज़ी बड़ा मान लेती है। जिसमें प्रकाश की तेज़ी अनंत होती है।

व्युत्क्रम अतिपरवलयिक फलन artanh का उपयोग करते हुए, वेग v के संगत वेग w = artanh(v / c) है। जहाँ c प्रकाश का वेग है। कम गति के लिए, w लगभग v / c है। चूंकि सापेक्षता में कोई भी वेग v अंतराल c < v < c के लिए विवश है। अनुपात v / c संतुष्ट करता है −1 < v / c < 1.। व्युत्क्रम अतिपरवलयिक स्पर्शरेखा में इसके डोमेन के लिए इकाई अंतराल (−1, 1) होता है, और इसकी प्रतिरूप (गणित) के लिए पूर्ण वास्तविक रेखा ,अर्थात अंतराल c < v < c मानचित्र पर −∞ < w < ∞ बनाता है।

इतिहास

Hyperbolic sector.svg

सन्न 1908 में हरमन मिन्कोव्स्की ने समझाया कि कैसे लोरेंत्ज़ परिवर्तन को समन्वय समय के अतिशयोक्तिपूर्ण रोटेशन (पूर्णतः चक्रानुक्रम) के रूप में देखा जा सकता है, अर्थात काल्पनिक कोण के माध्यम से रोटेशन (पूर्णतः चक्रानुक्रम)।[1]इस कारण यह कोण (स्थानिक आयाम में) फ्रेम के मध्य वेग का सरल जोड़ माप का प्रतिनिधित्व करता है।[2] वेग को बदलने वाला तेज़ी पैरामीटर सन्न 1910 में व्लादिमीर वेरिकैक और ई.टी. व्हिटेकर द्वारा प्रस्तुत किया गया था।[3][4] पैरामीटर को अल्फ्रेड रॉब (1911) द्वारा तेज़ी नाम दिया गया था[5] और इस शब्द को पश्चात् के कई लेखकों, जैसे लुडविग सिल्बरस्टीन (1914), फ्रैंक मॉर्ले (1936) और वोल्फगैंग रिंडलर (2001) के द्वारा अपनाया गया था।

अतिशयोक्तिपूर्ण क्षेत्र का क्षेत्रफल

सेंट विंसेंट के ग्रेगरी द्वारा अतिपरवलय xy = 1 के चतुर्भुज (गणित) ने प्राकृतिक लघुगणक को अतिशयोक्तिपूर्ण क्षेत्र के क्षेत्र के रूप में स्थापित किया गया है, या स्पर्शोन्मुख के समान्तर क्षेत्र के रूप में स्थापित किया गया है। अंतरिक्ष-समय सिद्धांत में, प्रकाश द्वारा घटनाओं का संबंध ब्रह्मांड को अतीत, भविष्य, या यहां और कहीं और के आधार पर विभाजित करता है। अंतरिक्ष में किसी भी रेखा पर, प्रकाश किरण को बाएँ या दाएँ निर्देशित किया जा सकता है। एक्स-अक्ष को दाएँ बीम द्वारा पारित घटनाओं के रूप में और वाई-अक्ष को बाएं बीम की घटनाओं के रूप में लें सकते है। अतः फिर आराम करने वाले फ्रेम में विकर्ण x = y के साथ समय होता है। आयताकार अतिपरवलय xy = 1 का उपयोग वेगों को नापने के लिए किया जा सकता है (पहले चतुर्थांश में)। शून्य वेग (1,1) से मेल खाता है। अतिपरवलय पर किसी भी बिंदु में प्रकाश-शंकु निर्देशांक होते हैं जहां w तीव्रता है, और इन निर्देशांकों के लिए (1,1) से अतिशयोक्तिपूर्ण क्षेत्र के क्षेत्र के समान्तर है। इसके अतिरिक्त कई लेखक इकाई अतिपरवलय का उल्लेख करते हैं पैरामीटर के लिए तेज़ी का उपयोग करते हुए, जैसा कि मानक स्पेसटाइम आरेख में है। वहाँ कुल्हाड़ियों को घड़ी और मीटर-स्टिक, अधिक परिचित बेंचमार्क और स्पेसटाइम सिद्धांत के आधार पर मापा जाता है। अतः तब बीम-स्पेस के अतिशयोक्ति पैरामीटर के रूप में तेज़ी का चित्रण संदर्भ है। सत्रहवीं शताब्दी में हमारे अनमोल पारलौकिक कार्यों की उत्पत्ति, और स्पेसटाइम डायग्रामिंग का पूरक है।

लोरेंत्ज़ बूस्ट

तेज़ी w सदिश-मैट्रिक्स उत्पाद के रूप में लोरेंत्ज़ बूस्ट के रैखिक प्रतिनिधित्व में उत्पन्न होता है।

.

गणित का सवाल Λ(w) प्रकार का है के साथ p और q संतुष्टि देने वाला p2q2 = 1 के साथ है, जिससे कि (p, q) अतिपरवलय इकाई पर स्थित है। इस प्रकार के मैट्रिसेस अनिश्चितकालीन ऑर्थोगोनल समूह ओ (1,1) बनाते हैं। जिसमे एंटी-डायगोनल यूनिट मैट्रिक्स द्वारा फैलाये गये आयामी लाई बीजगणित होते है, यह दर्शाता है कि तेज़ी इस लाई बीजगणित पर समन्वय है। इस क्रिया को स्पेसटाइम आरेख में दर्शाया जा सकता है। मैट्रिक्स घातीय संकेतन में, Λ(w) के रूप में व्यक्त किया जा सकता है , जंहा Z प्रति-विकर्ण इकाई मैट्रिक्स का ऋणात्मक है।

इसे सिद्ध करना कठिन नहीं है।

.

यह तेजी की उपयोगी योगात्मक गुण को स्थापित करता है। यदि A, B और C संदर्भ के फ्रेम हैं। तब

जंहा wPQ संदर्भ P के फ्रेम के सापेक्ष संदर्भ Q के फ्रेम की तेज़ी को दर्शाता है। इस सूत्र की सरलता संबंधित वेग-जोड़ सूत्र की जटिलता के विपरीत है।

जैसा कि हम ऊपर लोरेंत्ज़ परिवर्तन से देख सकते हैं, लोरेंत्ज़ कारक cosh w की पहचान होती है।

,

इतनी तेज़ी w को γ और β उपयोग करते हुए लोरेंत्ज़ परिवर्तन अभिव्यक्ति में अतिशयोक्तिपूर्ण कोण के रूप में निहित रूप से उपयोग किया जाता है। हम तीव्रता को वेग-जोड़ सूत्र से संबंधित करते हैं।

पहचानने से

इसलिए

उचित त्वरण (त्वरित होने वाली वस्तु द्वारा त्वरण 'महसूस' किया जाता है) उचित समय के संबंध में तीव्रता के परिवर्तन की दर है (समय के रूप में त्वरण से गुजरने वाली वस्तु द्वारा मापा जाता है)। इसलिए, किसी दिए गए फ्रेम में किसी वस्तु की गति को केवल उस वस्तु के वेग के रूप में देखा जा सकता है, जैसा कि गैर-सापेक्ष रूप से वस्तु पर जड़त्वीय मार्गदर्शन प्रणाली द्वारा गणना की जाती है। यदि वह उस फ्रेम में आराम से अपनी दी गई गति से त्वरित होती है। .

अतः β और γ का उत्पाद अधिकांशतः प्रकट होता है, और उपरोक्त तर्कों से होता है।

घातीय और लघुगणक संबंध

उपरोक्त अभिव्यक्तियों से हमारे पास है।

और इस प्रकार

या स्पष्ट रूप से

डॉप्लर-शिफ्ट फैक्टर तेज़ी w से जुड़ा हुआ है w है। .

प्रायोगिक कण भौतिकी में

शक्ति E और अदिश संवेग |p| अशून्य (विराम) द्रव्यमान m के कण का द्वारा दिया जाता हैं।

w की परिभाषा के साथ,

और इस प्रकार साथ

ऊर्जा और अदिश संवेग को इस प्रकार लिखा जा सकता है।

तब, तेज़ी की गणना मापी गई ऊर्जा और संवेग से की जा सकती है।

चूंकि, प्रायोगिक कण भौतिक विज्ञानी अधिकांशतः बीम अक्ष के सापेक्ष तीव्रता की संशोधित परिभाषा का उपयोग करते हैं।

जंहा pz बीम अक्ष के साथ संवेग का घटक है।[6] यह बीम अक्ष के साथ बढ़ावा देने की तीव्रता है। जो प्रयोगशाला फ्रेम से पर्यवेक्षक को फ्रेम में ले जाता है। जिसमें कण केवल बीम के लंबवत चलता है। इससे संबंधित छद्मता की अवधारणा है।

बीम अक्ष के सापेक्ष तेज़ी को भी व्यक्त किया जा सकता है।

यह भी देखें

नोट्स और संदर्भ

  1. Hermann Minkowski (1908) Fundamental Equations for Electromagnetic Processes in Moving Bodies via Wikisource
  2. Sommerfeld, Phys. Z 1909
  3. Vladimir Varicak (1910) Application of Lobachevskian Geometry in the Theory of Relativity Physikalische Zeitschrift via Wikisource
  4. E. T. Whittaker (1910) A History of the Theories of Aether and Electricity, page 441.
  5. Alfred Robb (1911) Optical Geometry of Motion p.9
  6. Amsler, C. et al., "The Review of Particle Physics", Physics Letters B 667 (2008) 1, Section 38.5.2

श्रेणी:विशेष सापेक्षता