बौंडी के-कैलकुलस
बॉन्डी के-कलन (कैलकुलस) सर हरमन बॉन्डी द्वारा लोकप्रिय विशेष सापेक्षता सिखाने की विधि है, जिसका उपयोग विश्वविद्यालय स्तर की भौतिकी कक्षाओं (उदाहरण के लिए ऑक्सफोर्ड विश्वविद्यालय में) में किया गया है।[1]), और कुछ सापेक्षता पाठ्यपुस्तकों में किया गया है ।[2]: 58–65 [3]
K-कलन की उपयोगिता इसकी सरलता है। सापेक्षता के अनेक परिचय वेग की अवधारणा और लोरेंत्ज़ परिवर्तन की व्युत्पत्ति से प्रारंभ होते हैं। अन्य अवधारणाएँ जैसे समय प्रसार, लंबाई संकुचन, साथ सापेक्षता की सापेक्षता, दोहरा विरोधाभास का संकल्प और सापेक्षतावादी डॉपलर प्रभाव लोरेंत्ज़ परिवर्तन से प्राप्त होते हैं, ये सभी वेग के कार्यों के रूप में हैं।
बॉन्डी ने अपनी पुस्तक रिलेटिविटी एंड कॉमन सेंस में,[4] पहली बार 1964 में प्रकाशित हुआ और 1962 में इलस्ट्रेटेड लंदन समाचार में प्रकाशित लेखों के आधार पर, प्रस्तुति के क्रम को विपरीत कर दिया गया है। वह जिसे "मौलिक अनुपात" कहते हैं, उससे प्रारंभ करते हैं जिसे अक्षर द्वारा दर्शाया जाता है (जो रेडियल डॉपलर कारक बनता है)[3]: 40 इससे वह दोहरा विरोधाभास और एक साथ सापेक्षता, समय प्रसार, की व्याख्या करते हैं। और लंबाई संकुचन, सभी के संदर्भ में प्रदर्शनी में बाद में ऐसा नहीं हुआ कि वह वेग और मौलिक अनुपात k के बीच एक लिंक प्रदान करता है। लोरेंत्ज़ परिवर्तन पुस्तक के अंत में दिखाई देता है।
इतिहास
के-कलन विधि का उपयोग पहले 1935 में ई. ए. मिल्ने द्वारा किया गया था।[5] मिल्ने ने स्थिर डॉपलर कारक को दर्शाने के लिए अक्षर का उपयोग किया गया था, किन्तु गैर-जड़त्वीय गति (और इसलिए एक भिन्न डॉपलर कारक) से जुड़े एक अधिक सामान्य स्थिति पर भी विचार किया गया है। बोंडी ने के अतिरिक्त अक्षर का उपयोग किया और प्रस्तुति को सरल बनाया (केवल स्थिरांक के लिए), और "k-कलन" नाम प्रस्तुत किया गया था।[4]: 109
बोंडी का k-कारक
दो जड़त्वीय पर्यवेक्षकों, ऐलिस और बॉब पर विचार करें, जो स्थिर सापेक्ष वेग से एक दूसरे से सीधे दूर जा रहे हैं। ऐलिस प्रत्येक सेकंड में एक बार बॉब की ओर नीली प्रकाश की फ्लैश भेजती है, जैसा कि उसकी अपनी घड़ी से मापा जाता है। चूँकि ऐलिस और बॉब एक दूरी से अलग हैं, इसलिए ऐलिस द्वारा फ़्लैश भेजने और बॉब द्वारा फ़्लैश प्राप्त करने के बीच देरी होती है। इसके अतिरिक्त, पृथक्करण दूरी निरंतर एक स्थिर दर से बढ़ रही है, इसलिए विलंब बढ़ता जा रहा है। इसका अर्थ यह है कि बॉब को फ्लैश प्राप्त होने के बीच का समय अंतराल, जैसा कि उसकी घड़ी द्वारा मापा जाता है, इसे सेकंड से अधिक है, मान लीजिए कि कुछ स्थिरांक के लिए सेकंड (इसके अतिरिक्त , यदि ऐलिस और बॉब सीधे एक दूसरे की ओर बढ़ रहे होते, तो a) समान तर्क प्रयुक्त होगा किन्तु उस स्थिति में है[4]: 80
बॉन्डी ने को "एक मौलिक अनुपात" के रूप में वर्णित किया है,[4]: 88 और अन्य लेखकों ने तब से इसे "बॉन्डी के-कारक " या "बॉन्डी का के-कारक " कहा है।[2]: 63
ऐलिस की चमक उसकी घड़ी द्वारा हर्ट्ज की आवृत्ति पर प्रसारित होती है, और बॉब द्वारा उसकी घड़ी द्वारा हर्ट्ज की आवृत्ति पर प्राप्त की जाती है। इसका तात्पर्य के डॉपलर कारक से है। तो बॉन्डी का के-कारक डॉपलर कारक का दूसरा नाम है (जब स्रोत ऐलिस और पर्यवेक्षक बॉब सीधे एक दूसरे से दूर या एक दूसरे की ओर बढ़ रहे हैं)।[3]: 40
यदि ऐलिस और बॉब को भूमिकाओं की परिवर्तन करनी थी, और बॉब ने ऐलिस को प्रकाश की चमक भेजी, तो सापेक्षता के सिद्धांत (आइंस्टीन का पहला अभिधारणा) का तात्पर्य है कि बॉब से ऐलिस तक के-कारक का मान ऐलिस से लेकर ऐलिस तक के-कारक के समान होगा। बॉब, क्योंकि सभी जड़त्वीय पर्यवेक्षक समतुल्य हैं। तो के-कारक केवल पर्यवेक्षकों के बीच सापेक्ष गति पर निर्भर करता है और कुछ नहीं है।[4]: 80
पारस्परिक k-कारक
अब, तीसरे जड़त्वीय पर्यवेक्षक डेव पर विचार करें, जो ऐलिस से एक निश्चित दूरी पर है, और ऐसा है कि बॉब ऐलिस और डेव के बीच सीधी रेखा पर स्थित है। चूंकि ऐलिस और डेव परस्पर आराम की स्थिति में हैं, ऐलिस से डेव तक की देरी निरंतर है। इसका अर्थ यह है कि डेव को अपनी घड़ी के गणना से प्रत्येक सेकंड में एक बार की दर से ऐलिस की नीली चमक प्राप्त होती है, उसी दर से जिस दर से ऐलिस उन्हें भेजती है। दूसरे शब्दों में, ऐलिस से डेव तक के-कारक एक के समान है।[4]: 77
अब मान लीजिए कि जब भी बॉब को ऐलिस से नीला फ्लैश मिलता है तो वह तुरंत प्रत्येक सेकंड में एक बार (बॉब की घड़ी के अनुसार) डेव की ओर अपना लाल फ्लैश भेजता है। आइंस्टीन का दूसरा अभिधारणा, कि प्रकाश की गति उसके स्रोत की गति से स्वतंत्र है, इसका तात्पर्य यह है कि ऐलिस की नीली फ्लैश और बॉब की लाल फ्लैश दोनों एक ही गति से यात्रा करती हैं, और न ही दूसरे से आगे निकलती हैं, और इसलिए एक ही समय में डेव पर पहुंचती हैं। तो डेव को डेव की घड़ी से प्रत्येक सेकंड में बॉब से एक लाल फ्लैश प्राप्त होता है, जो बॉब द्वारा बॉब की घड़ी द्वारा प्रत्येक सेकंड में भेजा जाता था। इसका तात्पर्य यह है कि बॉब से डेव तक के-कारक . है।.[4]: 80
यह स्थापित करता है कि सीधे एक-दूसरे से दूर जाने वाले (लाल शिफ्ट) पर्यवेक्षकों के लिए के-कारक, समान गति (नीला बदलाव) से एक-दूसरे की ओर सीधे जाने वाले पर्यवेक्षकों के लिए के-कारक का व्युत्क्रम है।
दोहरा विरोधाभास
अब चौथे जड़त्व पर्यवेक्षक कैरल पर विचार करें जो डेव से ऐलिस तक ठीक उसी गति से यात्रा करता है जिस गति से बॉब ऐलिस से डेव तक यात्रा करता है। कैरोल की यात्रा का समय इस प्रकार तय किया गया है कि वह डेव को ठीक उसी समय छोड़ती है जब बॉब आता है। ऐलिस, बॉब और कैरोल की घड़ियों द्वारा रिकॉर्ड किए गए समय को निरूपित करें
जब बॉब ऐलिस के पास से गुजरता है, तो वे दोनों अपनी घड़ियों को पर सिंक्रोनाइज़ कर देते हैं। जब कैरोल बॉब के पास से गुजरती है, तो वह अपनी घड़ी को बॉब की घड़ी के साथ समकालिक कर देती है जो कि अंत में, जैसे ही कैरोल ऐलिस के पास से गुजरती है, वे अपनी घड़ियों की तुलना एक दूसरे से करते हैं। न्यूटोनियन भौतिकी में, उम्मीद यह होगी कि, अंतिम तुलना में, ऐलिस और कैरोल की घड़ी सहमत होंगी, नीचे दिखाया जाएगा कि सापेक्षता में यह सत्य नहीं है। यह प्रसिद्ध "जुड़वा विरोधाभास" का एक संस्करण है जिसमें एक जैसे दोहरा अलग हो जाते हैं और फिर से एक हो जाते हैं, किन्तु बाद में पता चलता है कि उनमें से एक अब दूसरे से बड़ा है।
यदि ऐलिस बॉब की ओर समय पर प्रकाश की एक फ्लैश भेजता है, तो, के-कारक की परिभाषा के अनुसार, यह समय पर बॉब द्वारा प्राप्त किया जाएगा। फ़्लैश का समय इस प्रकार तय किया गया है कि वह ठीक उसी समय बॉब के पास पहुंचे जब बॉब कैरोल से मिलता है, इसलिए कैरोल अपनी घड़ी को पढ़ने के लिए सिंक्रनाइज़ करती है।
इसके अतिरिक्त, जब बॉब और कैरोल मिलते हैं, तो वे दोनों एक साथ ऐलिस को फ्लैश भेजते हैं, जो ऐलिस को एक साथ प्राप्त होते हैं। सबसे पहले, समय पर भेजे गए बॉब के फ्लैश को ध्यान में रखते हुए, इसे ऐलिस द्वारा समय पर प्राप्त किया जाना चाहिए, इस तथ्य का उपयोग करते हुए कि ऐलिस से बॉब तक के-कारक बॉब से ऐलिस तक के-कारक के समान है। .
चूँकि बॉब की बाहरी यात्रा की अवधि उसकी घड़ी के अनुसार थी, यह समरूपता से चलता है कि समान गति से समान दूरी पर कैरोल की वापसी यात्रा की अवधि भी उसकी घड़ी के अनुसार होनी चाहिए, और इसलिए जब कैरोल ऐलिस से मिलती है, तो कैरोल की घड़ी पर लिखा है यात्रा के इस चरण के लिए k-कारक पारस्परिक होना चाहिए (जैसा कि पहले चर्चा की गई है), इसलिए, ऐलिस की ओर कैरोल के फ्लैश को ध्यान में रखते हुए, का ट्रांसमिशन अंतराल के रिसेप्शन अंतराल से मेल खाता है। इसका अर्थ है कि अंतिम समय ऐलिस की घड़ी पर, जब कैरोल और ऐलिस मिलते हैं, तो होता है। यह तब से कैरोल की घड़ी के समय से बड़ा है
रडार माप और वेग
के-कलन पद्धति में, दूरियों को रडार का उपयोग करके मापा जाता है। एक पर्यवेक्षक एक लक्ष्य की ओर एक रडार पल्स भेजता है और उससे एक प्रतिध्वनि प्राप्त करता है। रडार पल्स (जो प्रकाश की गति पर यात्रा करता है) वहां और पीछे कुल दूरी तय करता है, जो कि लक्ष्य से दोगुनी दूरी है, और समय लेता है, जहां और हैं रडार पल्स के प्रसारण और रिसेप्शन पर पर्यवेक्षक की घड़ी द्वारा अंकित किया गया समय है। इसका तात्पर्य यह है कि लक्ष्य की दूरी है[2]: 60
विशेष स्थिति में जहां रडार पर्यवेक्षक ऐलिस है और लक्ष्य बॉब है (क्षणिक रूप से डेव के साथ सह-स्थित) जैसा कि पहले वर्णित है, के-कलन द्वारा हमारे पास है इसलिए
वेग रचना
तीन जड़त्वीय पर्यवेक्षकों ऐलिस, बॉब और एड पर विचार करें, जो उस क्रम में व्यवस्थित हैं और एक ही सीधी रेखा के साथ अलग-अलग गति से आगे बढ़ रहे हैं। इस खंड में, ऐलिस से बॉब (और इसी तरह पर्यवेक्षकों के अन्य जोड़े के बीच) के-कारक को दर्शाने के लिए नोटेशन का उपयोग किया जाएगा।
पहले की तरह, ऐलिस अपनी घड़ी से हर सेकंड में बॉब और एड को एक नीला फ्लैश भेजती है, जिसे बॉब को बॉब की घड़ी से हर सेकंड में मिलता है, और एड को हर सेकंड में एड की घड़ी से मिलता है।
अब मान लीजिए कि जब भी बॉब को ऐलिस से नीला फ्लैश मिलता है तो वह तुरंत अपना लाल फ्लैश एड की ओर भेजता है, बॉब की घड़ी द्वारा हर सेकंड में एक बार, इसलिए एड को बॉब की घड़ी से हर सेकंड में बॉब से लाल फ्लैश प्राप्त होता है। आइंस्टीन का दूसरा अभिधारणा, कि प्रकाश की गति उसके स्रोत की गति से स्वतंत्र है, इसका तात्पर्य यह है कि ऐलिस का नीला फ्लैश और बॉब का लाल फ्लैश दोनों एक ही गति से यात्रा करते हैं, न ही दूसरे से आगे निकलते हैं, और इसलिए एक ही समय में एड पर पहुंचते हैं। इसलिए, जैसा कि एड द्वारा मापा गया है, लाल फ़्लैश अंतराल और नीला फ़्लैश अंतराल समान होना चाहिए। तो k-कारकों के संयोजन का नियम केवल गुणन है:[4]: 105
अपरिवर्तनीय अंतराल
पहले वर्णित रडार विधि का उपयोग करते हुए, जड़त्व पर्यवेक्षक ऐलिस समय पर एक रडार पल्स संचारित करके और समय पर इसकी प्रतिध्वनि प्राप्त करके एक घटना के लिए निर्देशांक निर्दिष्ट करती है, जैसा कि उसकी घड़ी द्वारा मापा जाता है।
इसी प्रकार, जड़त्व पर्यवेक्षक बॉब समय पर एक रडार पल्स संचारित करके और समय पर उसकी प्रतिध्वनि प्राप्त करके, जैसा कि उसकी घड़ी द्वारा मापा जाता है, उसी घटना के लिए निर्देशांक निर्दिष्ट कर सकता है। चूँकि , जैसा कि चित्र से पता चलता है, बॉब के लिए अपना स्वयं का रडार सिग्नल उत्पन्न करना आवश्यक नहीं है, क्योंकि वह इसके अतिरिक्त केवल ऐलिस के सिग्नल से समय ले सकता है।
अब, ऐलिस से बॉब तक यात्रा करने वाले सिग्नल पर के-कलन विधि -प्रयुक्त करना है
लोरेंत्ज़ परिवर्तन
पिछले अनुभाग में के लिए दो समीकरणों को प्राप्त करने के लिए एक साथ समीकरणों के रूप में हल किया जा सकता है::[4]: 118 [2]: 67
शीघ्रता
शीघ्रता के-कारक से परिभाषित किया जा सकता है[2]: 71
संदर्भ
- ↑ Mason, L.J.; Woodhouse, N.M.J. "सापेक्षता और विद्युत चुंबकत्व" (PDF). Retrieved 20 February 2021.
- ↑ Jump up to: 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Woodhouse, NMJ (2003). विशेष सापेक्षता. Springer. ISBN 1-85233-426-6.
- ↑ Jump up to: 3.0 3.1 3.2 Ray d'Inverno (1992). "Chapter 2: The k-calculus". आइंस्टीन की सापेक्षता का परिचय. Clarendon Press. ISBN 0-19-859686-3.
- ↑ Jump up to: 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 Bondi, Hermann (1964). सापेक्षता और सामान्य ज्ञान. New York: Doubleday & Company. (Also published in 1965 in Great Britain by Heinemann, and reprinted in 1980 by Dover.)
- ↑ Milne, E.A. (1935). सापेक्षता गुरुत्वाकर्षण और विश्व संरचना. Oxford University Press. pp. 36–38.