निर्वात विद्युतशीलता
Value of ε0 | Unit |
---|---|
8.8541878128(13)×10−12 | F⋅m−1 |
55.26349406 | e2⋅eV−1⋅μm−1 |
वैक्यूम परमिटिटिविटी, जिसे आमतौर पर निरूपित किया जाता है ε0 (उच्चारण एप्सिलॉन शून्य या एप्सिलॉन शून्य), शास्त्रीय वैक्यूम की परावैद्युतांक का मान है। इसे मुक्त स्थान की पारगम्यता, विद्युत स्थिरांक या निर्वात की वितरित समाई के रूप में भी संदर्भित किया जा सकता है। यह एक आदर्श (बेसलाइन) भौतिक स्थिरांक है। इसका कोडाटा मूल्य है:
यह इस बात का माप है कि विद्युत आवेशों के जवाब में विद्युत क्षेत्र के घनत्व को कितना बनाने की अनुमति है, और विद्युत आवेश की इकाइयों को यांत्रिक मात्रा जैसे लंबाई और बल से संबंधित करता है।[2] उदाहरण के लिए, गोलाकार समरूपता (निर्वात#विद्युतचुंबकत्व में) वाले दो अलग-अलग विद्युत आवेशों के बीच बल कूलम्ब के नियम द्वारा दिया गया है:
यहाँ, क्यू1 और क्यू2 आरोप हैं, आर उनके केंद्रों के बीच की दूरी है, और निरंतर भिन्न का मान है (कूलम्ब स्थिरांक के रूप में जाना जाता है, ke) लगभग 9 × 10 है9 एन⋅एम2⋅सी-2. इसी तरह, ई0 मैक्सवेल के समीकरणों में प्रकट होता है, जो विद्युत क्षेत्र और चुंबकीय क्षेत्र और विद्युत चुम्बकीय विकिरण के गुणों का वर्णन करते हैं, और उन्हें उनके स्रोतों से संबंधित करते हैं। इलेक्ट्रिकल इंजीनियरिंग में, ε0 विभिन्न ढांकता हुआ सामग्रियों की पारगम्यता को मापने के लिए स्वयं को एक इकाई के रूप में प्रयोग किया जाता है।
मूल्य
ε का मान0 सूत्र द्वारा परिभाषित किया गया है[3]
जहाँ c इकाइयों की अंतर्राष्ट्रीय प्रणाली में शास्त्रीय निर्वात में प्रकाश की गति के लिए परिभाषित मान है,[4]: 127 और μ0 वह पैरामीटर है जिसे अंतर्राष्ट्रीय मानक संगठन चुंबकीय स्थिरांक (आमतौर पर वैक्यूम पारगम्यता या मुक्त स्थान की पारगम्यता कहा जाता है) कहते हैं। पारगम्यता और पारगम्यता विद्युत चुंबकत्व में उपयोग किए जाने वाले दो अलग-अलग उपाय हैं। परमिटिटिविटी सामग्री के भीतर ऊर्जा को स्टोर करने के लिए सामग्री की क्षमता को मापती है। पारगम्यता सामग्री के भीतर एक चुंबकीय क्षेत्र के गठन का समर्थन करने के लिए सामग्री की क्षमता का एक उपाय है।μ के बाद से0 इसका अनुमानित मान 4π × 10 है−7 हेनरी (इकाई)/मीटर,[5] और c का परिभाषित मान है 299792458 m⋅s−1, यह ε का अनुसरण करता है0 के रूप में संख्यात्मक रूप से व्यक्त किया जा सकता है
- (या एम्पेयर 2⋅दूसरा 4⋅किलोग्राम−1⋅मीटर−3 SI आधार इकाइयों में, या कूलम्ब2⋅न्यूटन (इकाइयां)−1⋅मीटर-2 या कूलम्ब⋅वाल्ट −1⋅मीटर-1 अन्य SI सुसंगत इकाइयों का उपयोग करके)।[6][7]
विद्युत स्थिरांक ε की ऐतिहासिक उत्पत्ति0, और इसके मूल्य को नीचे और अधिक विस्तार से समझाया गया है।
एसआई इकाइयों की पुनर्परिभाषा
एम्पीयर को 20 मई 2019 से प्राथमिक शुल्क को कूलॉम की सटीक संख्या के रूप में परिभाषित करके फिर से परिभाषित किया गया था,[4]इस आशय से कि निर्वात विद्युत पारगम्यता का अब SI इकाइयों में सटीक रूप से निर्धारित मान नहीं है। इलेक्ट्रॉन आवेश का मान एक संख्यात्मक रूप से परिभाषित मात्रा बन गया, जिसे मापा नहीं गया, जिससे μ बना0 एक मापा मात्रा। नतीजतन, ε0 सटीक नहीं है। पहले की तरह, यह समीकरण द्वारा परिभाषित किया गया है ε0 = 1/(μ0c2), और इस प्रकार μ के मान से निर्धारित होता है0, वैक्यूम पारगम्यता जो बदले में प्रायोगिक रूप से निर्धारित आयाम रहित ठीक-संरचना निरंतर α द्वारा निर्धारित की जाती है:
e प्राथमिक आवेश होने के साथ, h प्लैंक स्थिरांक है, और c विद्युत चुंबकत्व में निर्वात # में प्रकाश की गति है, प्रत्येक सटीक परिभाषित मानों के साथ। ε के मान में आपेक्षिक अनिश्चितता0 इसलिए यह वही है जो आयाम रहित ठीक-संरचना स्थिरांक के लिए है, अर्थात् 1.5×10−10.[8]
शब्दावली
ऐतिहासिक रूप से, पैरामीटर ε0 कई अलग-अलग नामों से जाना जाता रहा है। वैक्यूम परमिटिटिविटी या इसके वेरिएंट, जैसे वैक्यूम में / की परमिटिटिविटी,[9][10] खाली जगह की पारगम्यता,[11] या मुक्त स्थान की पारगम्यता[12] व्यापक हैं। मानक संगठन दुनिया भर में अब इस मात्रा के लिए एक समान शब्द के रूप में विद्युत स्थिरांक का उपयोग करते हैं,[6]और आधिकारिक मानक दस्तावेजों ने इस शब्द को अपनाया है (हालांकि वे पुराने शब्दों को समानार्थक शब्द के रूप में सूचीबद्ध करना जारी रखते हैं)।[13][14] एक अन्य ऐतिहासिक पर्याय निर्वात का ढांकता हुआ स्थिरांक था, क्योंकि ढांकता हुआ स्थिरांक कभी-कभी पूर्ण पारगम्यता के लिए अतीत में उपयोग किया जाता था।[15][16] हालांकि, आधुनिक उपयोग में ढांकता हुआ स्थिरांक विशेष रूप से एक सापेक्ष पारगम्यता ε/ε को संदर्भित करता है0 और यहां तक कि सापेक्ष स्थैतिक पारगम्यता के पक्ष में कुछ मानक निकायों द्वारा इस उपयोग को अप्रचलित माना जाता है।[14][17] इसलिए, विद्युत स्थिरांक ε के लिए निर्वात का परावैद्युतांक पद0 अधिकांश आधुनिक लेखकों द्वारा अप्रचलित माना जाता है, हालांकि निरंतर उपयोग के कभी-कभार उदाहरण मिल सकते हैं।
अंकन के लिए, स्थिरांक को या तो निरूपित किया जा सकता है या , अक्षर एप्सिलॉन के लिए किसी भी सामान्य ग्लिफ़ का उपयोग करना।
पैरामीटर ε की ऐतिहासिक उत्पत्ति0
जैसा कि ऊपर बताया गया है, पैरामीटर ε0 एक माप-प्रणाली स्थिरांक है। विद्युतचुंबकीय मात्राओं को परिभाषित करने के लिए उपयोग किए जाने वाले समीकरणों में इसकी उपस्थिति नीचे वर्णित तथाकथित युक्तिकरण प्रक्रिया का परिणाम है। लेकिन इसके लिए एक मान आवंटित करने की विधि परिणाम का परिणाम है कि मैक्सवेल के समीकरणों का अनुमान है कि, मुक्त स्थान में, विद्युत चुम्बकीय तरंगें प्रकाश की गति से चलती हैं। समझ क्यों ε0 इतिहास की एक संक्षिप्त समझ की आवश्यकता है।
इकाइयों का युक्तिकरण
चार्ल्स ऑगस्टिन डी कूलम्ब और अन्य के प्रयोगों से पता चला है कि मुक्त स्थान में r दूरी पर स्थित बिजली की दो समान बिंदु-जैसी मात्राओं के बीच बल F को एक सूत्र द्वारा दिया जाना चाहिए जिसका रूप है
जहां क्यू एक मात्रा है जो दो बिंदुओं में से प्रत्येक पर मौजूद बिजली की मात्रा का प्रतिनिधित्व करती है, और केe कूलम्ब नियतांक है। यदि कोई बिना किसी बाधा के प्रारंभ कर रहा है, तो k का मानe मनमाने ढंग से चुना जा सकता है।[18] k के प्रत्येक भिन्न विकल्प के लिएe क्यू की एक अलग व्याख्या है: भ्रम से बचने के लिए, प्रत्येक अलग व्याख्या को एक विशिष्ट नाम और प्रतीक आवंटित करना होगा।
19वीं शताब्दी के अंत में सहमत हुए समीकरणों और इकाइयों की प्रणालियों में से एक, जिसे सेंटीमीटर-ग्राम-सेकंड इलेक्ट्रोस्टैटिक सिस्टम ऑफ़ यूनिट्स (सीजीएस ईएसयू सिस्टम) कहा जाता है, निरंतर ke 1 के बराबर लिया गया था, और एक मात्रा जिसे अब गॉसियन यूनिट#यूनिट ऑफ चार्ज क्यू कहा जाता हैs परिणामी समीकरण द्वारा परिभाषित किया गया था
गॉसियन आवेश की इकाई, स्टेटकूलॉम्ब, ऐसी है कि दो इकाइयाँ, 1 सेंटीमीटर की दूरी पर, बल की cgs इकाई, डाएन के बराबर बल के साथ एक दूसरे को पीछे हटाती हैं। इस प्रकार गाऊसी आवेश की इकाई को 1 डाइन भी लिखा जा सकता है1/2 सेमी. गॉसियन इलेक्ट्रिक चार्ज आधुनिक (इकाइयों की एमकेएस प्रणाली और बाद में इंटरनेशनल सिस्टम ऑफ यूनिट्स) इलेक्ट्रिक चार्ज के समान गणितीय मात्रा नहीं है और कूलॉम में मापा नहीं जाता है।
बाद में यह विचार विकसित हुआ कि गोलाकार ज्यामिति की स्थितियों में कूलम्ब के नियम जैसे समीकरणों में एक कारक 4π को शामिल करना और इसे इस रूप में लिखना बेहतर होगा:
इस विचार को युक्तिकरण कहा जाता है। मात्राएँ क्यूs' और केe′ पुराने सम्मेलन के समान नहीं हैं। लाना ke′ = 1 विभिन्न आकार की बिजली की एक इकाई उत्पन्न करता है, लेकिन इसके अभी भी सीजीएस ईएसयू प्रणाली के समान आयाम हैं।
अगला कदम बिजली की मात्रा का प्रतिनिधित्व करने वाली मात्रा को अपने आप में एक मौलिक मात्रा के रूप में मानना था, जिसे प्रतीक q द्वारा दर्शाया गया था, और कूलम्ब के नियम को उसके आधुनिक रूप में लिखना था:
इस प्रकार उत्पन्न समीकरणों की प्रणाली को तर्कसंगत मीटर-किलोग्राम-सेकंड (आरएमकेएस) समीकरण प्रणाली, या मीटर-किलोग्राम-सेकंड-एम्पीयर (एमकेएसए) समीकरण प्रणाली के रूप में जाना जाता है। यह एसआई इकाइयों को परिभाषित करने के लिए उपयोग की जाने वाली प्रणाली है।[dubious ][4]नई मात्रा q को rmks इलेक्ट्रिक चार्ज, या (आजकल) सिर्फ इलेक्ट्रिक चार्ज नाम दिया गया है। मात्रा क्यूs पुरानी सीजीएस ईएसयू प्रणाली में प्रयुक्त नई मात्रा क्यू से संबंधित है:
ε के मान का निर्धारण0
एक अब आवश्यकता को जोड़ता है कि कोई चाहता है कि बल को न्यूटन में मापा जाए, दूरी को मीटर में, और चार्ज को इंजीनियरों की व्यावहारिक इकाई, कूलम्ब में मापा जाए, जिसे एक के लिए 1 एम्पीयर प्रवाहित होने पर संचित चार्ज के रूप में परिभाषित किया गया है। दूसरा। इससे पता चलता है कि पैरामीटर ε0 यूनिट सी आवंटित किया जाना चाहिए2⋅N-1⋅m−2 (या समकक्ष इकाइयां - व्यवहार में फैराड प्रति मीटर)।
ε का संख्यात्मक मान स्थापित करने के लिए0, कोई इस तथ्य का उपयोग करता है कि यदि कोई मैक्सवेल के समीकरणों को विकसित करने के लिए कूलम्ब के कानून और एम्पीयर के बल कानून (और अन्य विचारों) के तर्कसंगत रूपों का उपयोग करता है, तो ऊपर बताए गए रिश्ते को ε के बीच मौजूद पाया जाता है।0, एम0 और सी0. सिद्धांत रूप में, किसी के पास यह निर्णय लेने का विकल्प होता है कि विद्युत और चुंबकत्व की मौलिक इकाई कूलम्ब या एम्पीयर को बनाया जाए या नहीं। एम्पीयर का उपयोग करने के लिए अंतरराष्ट्रीय स्तर पर निर्णय लिया गया था। इसका मतलब है कि ε का मान0 सी के मूल्यों द्वारा निर्धारित किया जाता है0 और μ0, जैसा कि ऊपर कहा। μ का मान कैसे होता है, इसकी संक्षिप्त व्याख्या के लिए0 निर्णय लिया जाता है, निर्वात पारगम्यता देखें।
वास्तविक मीडिया की पारगम्यता
परिपाटी के अनुसार, विद्युत स्थिरांक ε0 संबंध में प्रकट होता है जो विद्युत विस्थापन क्षेत्र डी को विद्युत क्षेत्र ई और माध्यम के शास्त्रीय विद्युत ध्रुवीकरण घनत्व पी के संदर्भ में परिभाषित करता है। सामान्य तौर पर, इस संबंध का रूप है:
एक रैखिक ढांकता हुआ के लिए, पी को ई के आनुपातिक माना जाता है, लेकिन विलंबित प्रतिक्रिया की अनुमति है और स्थानिक रूप से गैर-स्थानीय प्रतिक्रिया है, इसलिए किसी के पास है:<ref name="Sólyom">
Jenö Sólyom (2008). "Equation 16.1.50". ठोस पदार्थों की भौतिकी के मूल सिद्धांत: इलेक्ट्रॉनिक गुण. Springer. p. 17. ISBN 978-3-540-85315-2. </रेफरी>
इस घटना में कि गैर-मौजूदगी और प्रतिक्रिया में देरी महत्वपूर्ण नहीं है, इसका परिणाम यह है:
जहां ε पारगम्यता है और εr सापेक्ष स्थिर पारगम्यता। निर्वात में # विद्युत चुंबकत्व में, ध्रुवीकरण P = 0, इसलिए εr = 1 और ε = ε0.
यह भी देखें
- कासिमिर प्रभाव
- कूलम्ब का नियम
- विद्युत चुम्बकीय तरंग समीकरण
- आईएसओ 31-5
- विद्युत चुम्बकीय क्षेत्र का गणितीय विवरण
- सापेक्ष पारगम्यता
- विद्युत चुम्बकीय तरंग समीकरण के साइनसॉइडल प्लेन-वेव सॉल्यूशंस
- तरंग प्रतिबाधा
- वैक्यूम पारगम्यता
टिप्पणियाँ
- ↑ "2018 CODATA Value: vacuum electric permittivity". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 20 May 2019.
- ↑ "electric constant". Electropedia: International Electrotechnical Vocabulary (IEC 60050). Geneva: International Electrotechnical Commission. Retrieved 26 March 2015..
- ↑ The approximate numerical value is found at: "-: Electric constant, ε0". NIST reference on constants, units, and uncertainty: Fundamental physical constants. NIST. Retrieved 22 January 2012. This formula determining the exact value of ε0 is found in Table 1, p. 637 of PJ Mohr; BN Taylor; DB Newell (April–June 2008). "Table 1: Some exact quantities relevant to the 2006 adjustment in CODATA recommended values of the fundamental physical constants: 2006" (PDF). Rev Mod Phys. 80 (2): 633–729. arXiv:0801.0028. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633.
- ↑ 4.0 4.1 4.2 International Bureau of Weights and Measures (20 May 2019), SI Brochure: The International System of Units (SI) (PDF) (9th ed.), ISBN 978-92-822-2272-0, archived (PDF) from the original on 13 January 2017
- ↑ See the last sentence of the NIST definition of ampere.
- ↑ 6.0 6.1 Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006" (PDF). Reviews of Modern Physics. 80 (2): 633–730. arXiv:0801.0028. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633. Archived from the original (PDF) on 1 October 2017. Direct link to value..
- ↑ A summary of the definitions of c, μ0 and ε0 is provided in the 2006 CODATA Report: CODATA report, pp. 6–7
- ↑ "2018 CODATA Value: fine-structure constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 20 May 2019.
- ↑ SM Sze & Ng KK (2007). "Appendix E". Physics of semiconductor devices (Third ed.). New York: Wiley-Interscience. p. 788. ISBN 978-0-471-14323-9.
- ↑ RS Muller, Kamins TI & Chan M (2003). Device electronics for integrated circuits (Third ed.). New York: Wiley. Inside front cover. ISBN 978-0-471-59398-0.
- ↑ FW Sears, Zemansky MW & Young HD (1985). College physics. Reading, Mass.: Addison-Wesley. p. 40. ISBN 978-0-201-07836-7.
- ↑ B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991)
- ↑ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 12, ISBN 92-822-2213-6, archived (PDF) from the original on 4 June 2021, retrieved 16 December 2021
- ↑ 14.0 14.1 Braslavsky, S.E. (2007). "Glossary of terms used in photochemistry (IUPAC recommendations 2006)" (PDF). Pure and Applied Chemistry. 79 (3): 293–465, see p. 348. doi:10.1351/pac200779030293. S2CID 96601716.
- ↑ "प्राकृतिक स्थिरांक". Freie Universität Berlin.
- ↑ King, Ronold W. P. (1963). Fundamental Electromagnetic Theory. New York: Dover. p. 139.
- ↑ IEEE Standards Board (1997). रेडियो तरंग प्रसार के लिए शर्तों की IEEE मानक परिभाषाएँ. p. 6. doi:10.1109/IEEESTD.1998.87897. ISBN 978-0-7381-0580-2.
- ↑ For an introduction to the subject of choices for independent units, see John David Jackson (1999). "Appendix on units and dimensions". Classical electrodynamics (Third ed.). New York: Wiley. pp. 775 et seq. ISBN 978-0-471-30932-1.
[Category:Fundamental constan