वॉल्यूम फॉर्म

From Vigyanwiki
Revision as of 15:33, 17 March 2023 by alpha>Indicwiki (Created page with "गणित में, एक वॉल्यूम फॉर्म या टॉप-डायमेंशनल फॉर्म अलग करने योग्य क...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक वॉल्यूम फॉर्म या टॉप-डायमेंशनल फॉर्म अलग करने योग्य कई गुना डायमेंशन के बराबर डिग्री का विभेदक रूप है। इस प्रकार कई गुना आयाम का , एक वॉल्यूम फॉर्म एक है -प्रपत्र। यह लाइन बंडल के अनुभाग (फाइबर बंडल) के स्थान का एक तत्व है , इस रूप में घोषित किया गया . एक कई गुना एक कहीं-गायब मात्रा के रूप में स्वीकार करता है अगर और केवल अगर यह उन्मुख है। एक कुंडा कई गुना में असीम रूप से कई वॉल्यूम फॉर्म होते हैं, क्योंकि एक वॉल्यूम फॉर्म को एक फ़ंक्शन द्वारा गुणा करने से एक और वॉल्यूम फॉर्म प्राप्त होता है। गैर-उन्मुख कई गुना पर, इसके बजाय कई गुना पर घनत्व की कमजोर धारणा को परिभाषित किया जा सकता है।

एक वॉल्यूम फॉर्म एक अलग-अलग कई गुना पर एक फ़ंक्शन (गणित) के अभिन्न अंग को परिभाषित करने का माध्यम प्रदान करता है। दूसरे शब्दों में, एक आयतन रूप एक माप (गणित) को जन्म देता है जिसके संबंध में कार्यों को उपयुक्त लेबेस्ग इंटीग्रल द्वारा एकीकृत किया जा सकता है। वॉल्यूम फॉर्म का पूर्ण मूल्य वॉल्यूम तत्व है, जिसे विभिन्न रूप से एक मुड़ वॉल्यूम फॉर्म या छद्म-वॉल्यूम फॉर्म के रूप में भी जाना जाता है। यह एक माप को भी परिभाषित करता है, लेकिन किसी भी अलग-अलग कई गुना, उन्मुख या नहीं पर मौजूद है।

काहलर मैनिफोल्ड्स, जटिल मैनिफोल्ड्स होने के कारण, स्वाभाविक रूप से उन्मुख होते हैं, और इसलिए उनके पास एक वॉल्यूम फॉर्म होता है। अधिक आम तौर पर, साहचर्य रूप की बाहय शक्ति पर साहचर्य बहुरूपी मात्रा रूप है। मैनिफोल्ड के कई वर्गों में कैनोनिकल वॉल्यूम फॉर्म होते हैं: उनके पास अतिरिक्त संरचना होती है जो पसंदीदा वॉल्यूम फॉर्म की पसंद की अनुमति देती है। ओरिएंटेड स्यूडो-रीमैनियन मैनिफोल्ड्स में एक संबंधित कैनोनिकल वॉल्यूम फॉर्म है।

अभिविन्यास

निम्नलिखित केवल अलग-अलग मैनिफोल्ड की उन्मुखता के बारे में होगा (यह किसी भी टोपोलॉजिकल मैनिफोल्ड पर परिभाषित एक अधिक सामान्य धारणा है)।

एक मैनिफोल्ड एडजस्टेबल है यदि इसमें एक समन्वय एटलस है जिसके सभी संक्रमण कार्यों में सकारात्मक जैकोबियन निर्धारक हैं। अधिकतम ऐसे एटलस का चयन एक अभिविन्यास है एक मात्रा रूप पर समन्वय चार्ट के एटलस के रूप में स्वाभाविक रूप से एक अभिविन्यास को जन्म देता है कि भेजो यूक्लिडियन वॉल्यूम फॉर्म के एक सकारात्मक गुणक के लिए एक वॉल्यूम फॉर्म चलती फ्रेम के पसंदीदा वर्ग के विनिर्देश के लिए भी अनुमति देता है स्पर्शरेखा सदिशों के आधार को बुलाओ दाहिना हाथ अगर

सभी दाएं हाथ के फ़्रेमों का संग्रह समूह क्रिया (गणित) द्वारा समूह (गणित) है में सामान्य रेखीय समूह मैपिंग की सकारात्मक निर्धारक के साथ आयाम। वे एक प्रिंसिपल बंडल | प्रिंसिपल बनाते हैं के रैखिक फ्रेम बंडल का उप-बंडल और इसलिए वॉल्यूम फॉर्म से जुड़ा ओरिएंटेशन फ्रेम बंडल के कैनोनिकल रिडक्शन देता है संरचना समूह के साथ एक उप-बंडल के लिए कहने का तात्पर्य यह है कि एक आयतन रूप जी-संरचना को जन्म देता है-संरचना चालू जिन फ़्रेमों पर विचार किया गया है, उन पर विचार करके अधिक कमी स्पष्ट रूप से संभव है

 

 

 

 

(1)

इस प्रकार एक आयतन रूप एक को जन्म देता है -संरचना भी। इसके विपरीत, एक दिया -संरचना, कोई थोप कर एक आयतन रूप को पुनः प्राप्त कर सकता है (1) विशेष रैखिक फ्रेम के लिए और फिर आवश्यक के लिए हल करना -प्रपत्र अपने तर्कों में एकरूपता की आवश्यकता के द्वारा।

एक मैनिफोल्ड ओरिएंटेबल है अगर और केवल अगर इसमें कहीं नहीं गायब होने वाला वॉल्यूम फॉर्म है। वास्तव में, के बाद से एक विरूपण वापसी है जहां धनात्मक वास्तविकताओं को अदिश आव्यूहों के रूप में सन्निहित किया जाता है। इस प्रकार हर -संरचना एक के लिए कम हो जाती है -संरचना, और -संरचनाएं अभिविन्यास के साथ मेल खाती हैं अधिक संक्षेप में, निर्धारक बंडल की तुच्छता ओरिएंटेबिलिटी के समतुल्य है, और एक लाइन बंडल तुच्छ है अगर और केवल अगर इसमें कहीं-गायब अनुभाग नहीं है। इस प्रकार, वॉल्यूम फॉर्म का अस्तित्व उन्मुखता के बराबर है।

उपायों से संबंध

एक मात्रा रूप दिया एक ओरिएंटेड मैनिफोल्ड पर, डेंसिटी ऑन मैनिफोल्ड एक आयतन स्यूडोटेंसर है। अभिविन्यास को भूलकर प्राप्त गैर-कई गुना पर छद्म रूप। गैर-उन्मुख मैनिफोल्ड पर घनत्व को अधिक आम तौर पर परिभाषित किया जा सकता है।

कोई भी आयतन छद्म रूप (और इसलिए कोई भी आयतन रूप) बोरेल सेट पर एक माप को परिभाषित करता है

अंतर यह है कि जब माप को (बोरेल) सबसेट पर एकीकृत किया जा सकता है, तो वॉल्यूम फॉर्म को केवल उन्मुख सेल पर ही एकीकृत किया जा सकता है। एकल चर कलन में, लेखन पर विचार एक मात्रा के रूप में, न केवल एक उपाय के रूप में, और सेल पर एकीकृत इंगित करता है विपरीत अभिविन्यास के साथ, कभी-कभी निरूपित किया जाता है .

इसके अलावा, सामान्य उपायों को निरंतर या सुचारू होने की आवश्यकता नहीं है: उन्हें एक मात्रा के रूप में परिभाषित करने की आवश्यकता नहीं है, या अधिक औपचारिक रूप से, किसी दिए गए मात्रा के संबंध में उनके रेडॉन-निकोडीम डेरिवेटिव को बिल्कुल निरंतर नहीं होना चाहिए।

विचलन

एक मात्रा रूप दिया पर कोई सदिश क्षेत्र के विचलन को परिभाषित कर सकता है अद्वितीय स्केलर-मूल्यवान फ़ंक्शन के रूप में, द्वारा चिह्नित संतुष्टि देने वाला

कहाँ झूठ व्युत्पन्न को दर्शाता है और के आंतरिक उत्पाद या बाएं टेन्सर संकुचन को दर्शाता है साथ में अगर एक कॉम्पैक्ट समर्थन वेक्टर फील्ड है और सीमा के साथ कई गुना है, तो स्टोक्स के प्रमेय का तात्पर्य है
जो विचलन प्रमेय का एक सामान्यीकरण है।

परिनालिका सदिश क्षेत्र वे होते हैं जिनके साथ यह लाइ डेरिवेटिव की परिभाषा से अनुसरण करता है कि वॉल्यूम फॉर्म एक सोलनॉइडल वेक्टर क्षेत्र के वेक्टर प्रवाह के तहत संरक्षित है। इस प्रकार सोलनॉइडल वेक्टर फ़ील्ड ठीक वे हैं जिनमें वॉल्यूम-संरक्षण प्रवाह होते हैं। यह तथ्य प्रसिद्ध है, उदाहरण के लिए, द्रव यांत्रिकी में, जहां एक वेग क्षेत्र का विचलन द्रव की संपीड्यता को मापता है, जो बदले में द्रव के प्रवाह के साथ किस मात्रा को संरक्षित करता है, इसका प्रतिनिधित्व करता है।

विशेष मामले

झूठ समूह

किसी भी झूठ समूह के लिए, एक प्राकृतिक आयतन रूप को अनुवाद द्वारा परिभाषित किया जा सकता है। यानी अगर का एक तत्व है तब एक वाम-अपरिवर्तनीय रूप द्वारा परिभाषित किया जा सकता है कहाँ वाम-अनुवाद है। एक परिणाम के रूप में, प्रत्येक झूठ बोलने वाला समूह उन्मुख होता है। यह आयतन रूप एक अदिश तक अद्वितीय है, और इसी माप को हार माप के रूप में जाना जाता है।

सहानुभूतिपूर्ण कई गुना

किसी भी सहानुभूतिपूर्ण कई गुना (या वास्तव में किसी भी लगभग सहानुभूतिपूर्ण कई गुना) में प्राकृतिक मात्रा का रूप होता है। अगर एक है -आयामी कई गुना सहानुभूतिपूर्ण रूप के साथ तब सहानुभूतिपूर्ण रूप की गैर-अपमानता के परिणामस्वरूप कहीं भी शून्य नहीं है। एक परिणाम के रूप में, कोई भी सहानुभूतिपूर्ण कई गुना उन्मुख (वास्तव में, उन्मुख) है। यदि कई गुना दोनों सहानुभूतिपूर्ण और रीमानियन हैं, तो दो वॉल्यूम फॉर्म सहमत हैं यदि कई गुना काहलर कई गुना है। काहलर।

रीमानियन वॉल्यूम फॉर्म

कोई भी ओरिएंटेशन (गणित) स्यूडो-रीमैनियन मैनिफोल्ड | स्यूडो-रीमैनियन ([[रीमैनियन कई गुना]] सहित) मैनिफोल्ड का एक प्राकृतिक आयतन रूप है। स्थानीय निर्देशांक में, इसे इस रूप में व्यक्त किया जा सकता है

जहां 1-रूप हैं जो कई गुना के स्पर्शरेखा बंडल के लिए सकारात्मक रूप से उन्मुख आधार बनाते हैं। यहाँ, कई गुना पर मीट्रिक टेंसर के मैट्रिक्स प्रतिनिधित्व के निर्धारक का पूर्ण मूल्य है।

वॉल्यूम फॉर्म को विभिन्न प्रकार से निरूपित किया जाता है

यहां ही हॉज स्टार है, इस प्रकार अंतिम रूप, इस बात पर जोर देता है कि वॉल्यूम फॉर्म कई गुना पर निरंतर मानचित्र का हॉज डुअल है, जो लेवी-सीविटा टेंसर के बराबर है|लेवी-सिविता टेंसर हालांकि ग्रीक अक्षर वॉल्यूम फॉर्म को निरूपित करने के लिए अक्सर उपयोग किया जाता है, यह संकेतन सार्वभौमिक नहीं है; प्रतीक अंतर ज्यामिति में अक्सर कई अन्य अर्थ होते हैं (जैसे कि एक सहानुभूतिपूर्ण रूप)।

वॉल्यूम फॉर्म के इनवेरिएंट्स

वॉल्यूम फॉर्म अद्वितीय नहीं हैं; वे निम्नानुसार कई गुना गैर-लुप्त होने वाले कार्यों पर एक टोरसर बनाते हैं। एक गैर-लुप्त होने वाला कार्य दिया गया पर और एक मात्रा रूप वॉल्यूम फॉर्म ऑन है इसके विपरीत, दो मात्रा रूप दिए गए हैं उनका अनुपात एक गैर-लुप्त होने वाला कार्य है (सकारात्मक यदि वे समान अभिविन्यास को परिभाषित करते हैं, ऋणात्मक यदि वे विपरीत अभिविन्यास को परिभाषित करते हैं)।

निर्देशांक में, वे दोनों केवल एक गैर-शून्य कार्य समय लेबेस्गु माप हैं, और उनका अनुपात कार्यों का अनुपात है, जो निर्देशांक की पसंद से स्वतंत्र है। आंतरिक रूप से, यह रेडॉन-निकोडिम प्रमेय#Radon.E2.80.93Nikodym व्युत्पन्न|Radon–Nikodym का व्युत्पन्न है इसके संबंध में एक ओरिएंटेड मैनिफोल्ड पर, किसी भी दो वॉल्यूम रूपों की आनुपातिकता को रैडॉन-निकोडीम प्रमेय के ज्यामितीय रूप के रूप में माना जा सकता है।

कोई स्थानीय संरचना नहीं

मैनिफोल्ड पर एक वॉल्यूम फॉर्म में इस अर्थ में कोई स्थानीय संरचना नहीं है कि यूक्लिडियन स्पेस पर दिए गए वॉल्यूम फॉर्म और वॉल्यूम फॉर्म के बीच अंतर करना छोटे खुले सेटों पर संभव नहीं है। (Kobayashi 1972). यानी हर बिंदु के लिए में एक खुला पड़ोस है का और एक डिफियोमोर्फिज्म का एक खुले सेट पर ऐसा है कि वॉल्यूम फॉर्म चालू है का ठहराना है साथ में एक परिणाम के रूप में, अगर और दो कई गुना हैं, प्रत्येक मात्रा रूपों के साथ फिर किसी भी बिंदु के लिए खुले पड़ोस हैं का और का और एक नक्शा ऐसा है कि वॉल्यूम फॉर्म चालू है पड़ोस तक ही सीमित वॉल्यूम फॉर्म पर वापस खींचता है पड़ोस तक ही सीमित : एक आयाम में, कोई इसे इस प्रकार सिद्ध कर सकता है: एक मात्रा रूप दिया पर परिभाषित करना

फिर मानक Lebesgue माप पुलबैक (अंतर ज्यामिति) को अंतर्गत : ठोस रूप से, उच्च आयामों में, कोई बिंदु दिया गया इसका स्थानीय रूप से होमियोमॉर्फिक पड़ोस है और एक ही प्रक्रिया लागू कर सकते हैं।

वैश्विक संरचना: आयतन

कनेक्टेड मैनिफोल्ड पर वॉल्यूम फॉर्म एक एकल वैश्विक अपरिवर्तनीय है, अर्थात् (समग्र) आयतन, निरूपित जो आयतन-रूप संरक्षण मानचित्रों के अंतर्गत अपरिवर्तनीय है; यह अनंत हो सकता है, जैसे कि लेबेस्ग माप के लिए डिस्कनेक्ट किए गए मैनिफोल्ड पर, प्रत्येक जुड़े हुए घटक का आयतन अपरिवर्तनीय है।

प्रतीकों में, अगर कई गुना का होमियोमोर्फिज्म है जो वापस खींचता है को तब

और मैनिफोल्ड्स का आयतन समान होता है।

कवरिंग नक्शा ्स के तहत वॉल्यूम रूपों को भी वापस खींचा जा सकता है, इस मामले में वे फाइबर की कार्डिनैलिटी (औपचारिक रूप से, फाइबर के साथ एकीकरण द्वारा) द्वारा मात्रा को गुणा करते हैं। अनंत शीट वाले कवर के मामले में (जैसे ), एक परिमित आयतन मैनिफोल्ड पर एक आयतन रूप एक अनंत आयतन कई गुना पर एक आयतन रूप में वापस खींचता है।

यह भी देखें

संदर्भ

  • Kobayashi, S. (1972), Transformation Groups in Differential Geometry, Classics in Mathematics, Springer, ISBN 3-540-58659-8, OCLC 31374337.
  • Spivak, Michael (1965), Calculus on Manifolds, Reading, Massachusetts: W.A. Benjamin, Inc., ISBN 0-8053-9021-9.