आधा-पूर्णांक
गणित में, आधा पूर्णांक संख्या का एक रूप है
सभी अर्ध-पूर्णांक हैं। आधा-पूर्णांक नाम संभवतः भ्रामक है, क्योंकि सेट को 1 जैसी संख्याओं को सम्मलित करने के लिए गलत समझा जा सकता है (आधा पूर्णांक 2 होना)। पूर्णांक-प्लस-आधा जैसा नाम अधिक त्रुटिहीन हो सकता है, किन्तु होने पर भी शाब्दिक रूप से सत्य न हो, आधा पूर्णांक पारंपरिक शब्द है।[citation needed] गणित और क्वांटम यांत्रिकी में अर्ध-पूर्णांक अधिकांशतः पर्याप्त होते हैं कि एक अलग शब्द सुविधाजनक होता है।
ध्यान दें कि एक पूर्णांक को आधा करने से हमेशा एक आधा पूर्णांक नहीं बनता है; यह एकमात्र विषम पूर्णांकों के लिए सत्य है। इस कारण से, आधे-पूर्णांकों को कभी-कभी आधा-विषम-पूर्णांक भी कहा जाता है। अर्ध-पूर्णांक द्विअर्थी परिमेय संख्याओं का एक उपसमुच्चय हैं (एक पूर्णांक को दो की घात से विभाजित करने पर प्राप्त होने वाली संख्याएँ)।[1]
अंकन और बीजगणितीय संरचना
सभी अर्ध-पूर्णांकों के समुच्चय (गणित) को अधिकांशतः निरूपित किया जाता है
गुण
- कुल मिलाकर आधा-पूर्णांक एक आधा-पूर्णांक है यदि और एकमात्र यदि अजीब है। यह भी सम्मलित है चूंकि खाली योग 0 आधा पूर्णांक नहीं है।
- आधे पूर्णांक का ऋणात्मक आधा पूर्णांक होता है।
- आधे पूर्णांकों के सेट की प्रमुखता पूर्णांकों के बराबर होती है। यह पूर्णांकों से अर्ध-पूर्णांकों तक एक आक्षेप के अस्तित्व के कारण है: , कहाँ एक पूर्णांक है
उपयोग करता है
क्षेत्र पैकिंग
चार आयामों में इकाई क्षेत्रों की सबसे घनी जाली पैकिंग (डी 4 जाली कहलाती है। डी4 lattice) प्रत्येक बिंदु पर एक गोला रखता है जिसके निर्देशांक या तो सभी पूर्णांक हैं या सभी अर्ध-पूर्णांक हैं। यह पैकिंग हर्विट्ज़ पूर्णांकों से निकटता से संबंधित है: चतुष्कोण जिनके वास्तविक गुणांक या तो सभी पूर्णांक हैं या सभी आधे-पूर्णांक हैं।[4]
भौतिकी
भौतिकी में, पाउली बहिष्करण सिद्धांत का परिणाम उन कणों के रूप में फर्मियन की परिभाषा से होता है, जिनमें स्पिन (भौतिकी) होते हैं जो आधे-पूर्णांक होते हैं।[5] क्वांटम हार्मोनिक ऑसिलेटर का ऊर्जा स्तर आधा-पूर्णांक पर होता है और इस प्रकार इसकी न्यूनतम ऊर्जा शून्य नहीं होती है।[6]
क्षेत्र की मात्रा
यद्यपि कारख़ाने का फ़ंक्शन एकमात्र पूर्णांक तर्कों के लिए परिभाषित किया गया है, इसे गामा समारोह का उपयोग करके आंशिक तर्कों तक बढ़ाया जा सकता है। आधे-पूर्णांकों के लिए गामा फलन एक n-बॉल|एक के आयतन के सूत्र का एक महत्वपूर्ण भाग है। n त्रिज्या की आयामी गेंद ,[7]
संदर्भ
- ↑ Sabin, Malcolm (2010). Analysis and Design of Univariate Subdivision Schemes. Geometry and Computing. Vol. 6. Springer. p. 51. ISBN 9783642136481.
- ↑ Turaev, Vladimir G. (2010). Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics. Vol. 18 (2nd ed.). Walter de Gruyter. p. 390. ISBN 9783110221848.
- ↑ Boolos, George; Burgess, John P.; Jeffrey, Richard C. (2002). Computability and Logic. Cambridge University Press. p. 105. ISBN 9780521007580.
- ↑ Baez, John C. (2005). "Review On Quaternions and Octonions: Their geometry, arithmetic, and symmetry by John H. Conway and Derek A. Smith". Bulletin of the American Mathematical Society (book review). 42: 229–243. doi:10.1090/S0273-0979-05-01043-8.
- ↑ Mészáros, Péter (2010). The High Energy Universe: Ultra-high energy events in astrophysics and cosmology. Cambridge University Press. p. 13. ISBN 9781139490726.
- ↑ Fox, Mark (2006). Quantum Optics: An introduction. Oxford Master Series in Physics. Vol. 6. Oxford University Press. p. 131. ISBN 9780191524257.
- ↑ "Equation 5.19.4". NIST Digital Library of Mathematical Functions. U.S. National Institute of Standards and Technology. 2013-05-06. Release 1.0.6.