फ्रोबेनियस आंतरिक गुणनफल

From Vigyanwiki
Revision as of 22:21, 22 March 2023 by alpha>Aagman

गणित में, फ्रोबेनियस आंतरिक गुणनफल एक द्वि आधारी संक्रिया है जो दो आव्यूह (गणित) लेता है और एक अदिश (गणित) देता है। इसे प्रायः निरूपित किया जाता है। संक्रिया दो आव्यूहों का एक घटक-वार आंतरिक उत्पाद है जैसे कि वे सदिश हों, और एक आंतरिक उत्पाद के लिए स्वयंसिद्धों को संतुष्ट करता है। दो आव्यूहों का आयाम समान होना चाहिए - पंक्तियों और स्तंभों की समान संख्या, परन्तु वर्ग आव्यूह तक ही सीमित नहीं है।

परिभाषा

दो जटिल संख्या-मानित n × m आव्यूह 'A' और 'B' को स्पष्ट रूप से

के रूप में लिखा गया है, फ्रोबेनियस आंतरिक उत्पाद को

के रूप में परिभाषित किया गया है, जहां शिरोपंक्ति जटिल संयुग्मी को दर्शाता है, और संयुग्म संक्रमण को दर्शाता है।[1] स्पष्ट रूप से यह राशि

है

गणना बिंदु उत्पाद के समान ही है, जो बदले में आंतरिक उत्पाद का एक उदाहरण है।[citation needed]

अन्य उत्पादों से संबंध

यदि A और B प्रत्येक वास्तविक संख्या-मानित आव्यूह हैं, तो फ्रोबेनियस आंतरिक उत्पाद हैडमार्ड उत्पाद (आव्यूह) की प्रविष्टियों का योग है। यदि आव्यूह सदिशीकृत (गणित) हैं (अर्थात, स्तंभ सदिश में परिवर्तित, द्वारा निरूपित) , तो

इसलिए

[citation needed]

गुण

यह चार जटिल-मानित आव्यूहों A, B, C, D, और दो सम्मिश्र संख्याओं a और b के लिए एक अनुक्रमिक रूप है:

इसके अलावा, आव्यूह का आदान-प्रदान जटिल संयुग्मन के लिए होता है:

उसी आव्यूह के लिए,

,[citation needed]

और,

फ्रोबेनियस मानदंड

आंतरिक उत्पाद फ्रोबेनियस मानदंड को प्रेरित करता है

[1]


उदाहरण

वास्तविक-मानित आव्यूह

दो वास्तविक मानित आव्यूहों के लिए, यदि

तब


जटिल-मानित आव्यूह

दो जटिल-मानित आव्यूह के लिए, यदि

तब

जबकि

स्वयं के साथAऔर स्वयं के साथ B के फ्रोबेनियस आंतरिक उत्पाद क्रमशः हैं


यह भी देखें

  • हैडमार्ड उत्पाद (आव्यूह)
  • हिल्बर्ट-श्मिट आंतरिक उत्पाद
  • क्रोनकर उत्पाद
  • आव्यूह विश्लेषण
  • आव्यूह गुणन
  • आव्यूह मानदंड
  • हिल्बर्ट स्पेस का टेंसर उत्पाद - फ्रोबेनियस आंतरिक गुणनफल एक विशेष मामला है जहां वेक्टर स्पेस सामान्य यूक्लिडियन आंतरिक उत्पाद के साथ परिमित-आयामी वास्तविक या जटिल वेक्टर स्पेस होते हैं।

संदर्भ

  1. 1.0 1.1 Horn, R.A.; C.R., Johnson (1985). मैट्रिक्स विश्लेषण में विषय (in English) (2nd ed.). Cambridge: Cambridge University Press. p. 321. ISBN 978-0-521-83940-2.

{{Navbox | name =बीजगणित | state =

| bodyclass = hlist

| title =बीजगणित | group1 =क्षेत्रों | list1 =

| group2 =बीजगणितीय संरचना | list2 =* समूह   ( सिद्धांत)

| group3 =लीनियर अलजेब्रा | list3 =* मैट्रिक्स और nbsp; (सिद्धांत)

| group4 =मल्टीलिनियर बीजगणित | list4 =* टेंसर बीजगणित

| group5 =विषय सूची | list5 =* सार बीजगणित

| group6 =शब्दावलियों | list6 =* रैखिक बीजगणित

| group7 =संबंधित | list7 =* अंक शास्त्र

| belowस्टाइल = फ़ॉन्ट-वेट: बोल्ड; | below =* श्रेणी

}}