बल क्षेत्र (भौतिकी)
भौतिकी में, बल क्षेत्र एक सदिश क्षेत्र होता है जो अंतरिक्ष में विभिन्न स्थितियों पर कण पर कार्य करने वाले संपर्क रहित बल के अनुरूप होता है। विशेष रूप से, बल क्षेत्र सदिश क्षेत्र है , जहाँ वह बल है जो कण अनुभव करेगा यदि वह बिंदु पर होता है.[1]
उदाहरण
- गुरुत्वाकर्षण दो वस्तुओं के बीच आकर्षण बल है। गुरुत्वाकर्षण बल क्षेत्र इस प्रभाव को दर्शाता है कि विशाल पिंड (या अधिक सामान्यतः, द्रव्यमान-ऊर्जा तुल्यता की कोई भी मात्रा) अपने चारों ओर अंतरिक्ष में फैली हुई है।[2] न्यूटोनियन गुरुत्वाकर्षण में, द्रव्यमान M का एक कण गुरुत्वाकर्षण क्षेत्र बनाता है , जहां रेडियल यूनिट वेक्टर कण से दूर इंगित करता है। पृथ्वी की सतह के निकट प्रकाश द्रव्यमान m के एक कण द्वारा अनुभव किया गया गुरुत्वाकर्षण बल के द्वारा दिया जाता है , जहाँ g मानक गुरुत्व है।[3][4]
- एक विद्युत क्षेत्र सदिश क्षेत्र है। यह द्वारा दिए गए बिंदु आवेश q पर एक बल लगाता है .[5]
काम
कार्य विस्थापन के साथ-साथ किसी वस्तु पर कार्य करने वाले बल पर निर्भर करता है। जैसे ही कण पथ C के साथ बल क्षेत्र के माध्यम से चलता है, बल द्वारा किया गया कार्य (भौतिकी) एक रेखा अभिन्न है
यह मान वेगमोमेंटम|/मोमेंटम से स्वतंत्र है कि कण पथ के साथ यात्रा करता है।
अपरिवर्तनवादी बल क्षेत्र
एक अपरिवर्तनवादी बल के लिए, यह स्वयं पथ से भी स्वतंत्र है, केवल आरंभिक और अंतिम बिंदुओं पर निर्भर करता है। इसलिए, बंद पथ में यात्रा करने वाली वस्तु के लिए कार्य शून्य है, क्योंकि इसके आरंभ और अंत बिंदु समान हैं:
यदि क्षेत्र अपरिवर्तनवादी है, तो किए गए कार्य को यह अनुभव करके अधिक आसानी से मूल्यांकन किया जा सकता है कि अपरिवर्तनवादी वेक्टर क्षेत्र को कुछ स्केलर संभावित फलन के ढाल के रूप में लिखा जा सकता है: फलन के ढाल के रूप में लिखा जा सकता
किया गया कार्य पथ के आरंभ और अंत बिंदुओं में इस क्षमता के मूल्य में अंतर है। यदि ये बिंदु क्रमशः x = a और x = b द्वारा दिए गए हैं:
यह भी देखें
- कार्यक्षेत्र रेखा
- बल
- बल क्षेत्र (प्रौद्योगिकी) Psychokinesis
- ठहराव क्षेत्र
- बल
- ट्रैक्टर बीम
संदर्भ
- ↑ Mathematical methods in chemical engineering, by V. G. Jenson and G. V. Jeffreys, p211
- ↑ Geroch, Robert (1981). General relativity from A to B. University of Chicago Press. p. 181. ISBN 0-226-28864-1., Chapter 7, page 181
- ↑ Vector calculus, by Marsden and Tromba, p288
- ↑ Engineering mechanics, by Kumar, p104
- ↑ Calculus: Early Transcendental Functions, by Larson, Hostetler, Edwards, p1055
बाहरी संबंध
- Conservative and non-conservative force-fields, Classical Mechanics, University of Texas at Austin