विद्युत विस्थापन क्षेत्र

From Vigyanwiki
Revision as of 13:32, 9 March 2023 by alpha>Indicwiki (Created page with "{{Use American English|date = March 2019}} {{Short description|Vector field related to displacement current and flux density}} भौतिकी में, विद्यु...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

भौतिकी में, विद्युत विस्थापन क्षेत्र (डी द्वारा निरूपित) या विद्युत प्रेरण एक सदिश क्षेत्र है जो मैक्सवेल के समीकरणों में प्रकट होता है। यह सामग्री के भीतर चार्ज घनत्व # मुक्त, बाध्य और कुल प्रभार के प्रभावों के लिए खाता है[further explanation needed]. डी विस्थापन के लिए खड़ा है, जैसा कि ढांकता हुआ ्स में विस्थापन वर्तमान की संबंधित अवधारणा में है। मुक्त स्थान में, विद्युत विस्थापन क्षेत्र प्रवाह#विद्युत प्रवाह के समतुल्य है, एक अवधारणा जो गॉस के नियम को समझती है। इकाइयों की अंतर्राष्ट्रीय प्रणाली (SI) में, इसे कूलम्ब प्रति मीटर वर्ग (C⋅m) की इकाइयों में व्यक्त किया जाता है-2).

परिभाषा

एक ढांकता हुआ सामग्री में, एक विद्युत क्षेत्र ई की उपस्थिति सामग्री (परमाणु परमाणु नाभिक और उनके इलेक्ट्रॉनों) में बाध्य आवेशों को थोड़ा अलग करने का कारण बनती है, जिससे एक स्थानीय विद्युत द्विध्रुवीय क्षण उत्पन्न होता है। विद्युत विस्थापन क्षेत्र D को इस प्रकार परिभाषित किया गया है

कहाँ निर्वात पारगम्यता (जिसे मुक्त स्थान की पारगम्यता भी कहा जाता है) है, और P सामग्री में स्थायी और प्रेरित विद्युत द्विध्रुवीय क्षणों का (मैक्रोस्कोपिक) घनत्व है, जिसे ध्रुवीकरण घनत्व कहा जाता है।

विस्थापन क्षेत्र गॉस के कानून को एक ढांकता हुआ में संतुष्ट करता है:

इस समीकरण में, प्रति यूनिट आयतन मुक्त प्रभारों की संख्या है। ये शुल्क वे हैं जिन्होंने वॉल्यूम को गैर-तटस्थ बना दिया है, और उन्हें कभी-कभी अंतरिक्ष प्रभार के रूप में संदर्भित किया जाता है। यह समीकरण वास्तव में कहता है कि डी की प्रवाह रेखाएं मुक्त शुल्कों पर शुरू और समाप्त होनी चाहिए। इसके विपरीत उन सभी आवेशों का घनत्व है जो एक द्विध्रुव का हिस्सा हैं, जिनमें से प्रत्येक तटस्थ है। धातु संधारित्र प्लेटों के बीच एक इन्सुलेटिंग परावैद्युत के उदाहरण में, केवल मुक्त आवेश धातु की प्लेटों पर होते हैं और परावैद्युत में केवल द्विध्रुव होते हैं। यदि ढांकता हुआ को डोप्ड अर्धचालक या आयनित गैस आदि द्वारा प्रतिस्थापित किया जाता है, तो इलेक्ट्रॉन आयनों के सापेक्ष गति करते हैं, और यदि प्रणाली परिमित है तो वे दोनों योगदान करते हैं किनारों पर।

Proof

Separate the total volume charge density into free and bound charges:

The density can be rewritten as a function of the polarization P:

The polarization P is defined to be a vector field whose divergence yields the density of bound charges ρb in the material. The electric field satisfies the equation:

and hence

सामग्री में आयनों या इलेक्ट्रॉनों पर इलेक्ट्रोस्टैटिक बलों को लोरेंत्ज़ बल के माध्यम से सामग्री में विद्युत क्षेत्र ई द्वारा नियंत्रित किया जाता है। इसके अलावा, डी विशेष रूप से मुफ्त शुल्क द्वारा निर्धारित नहीं किया जाता है। जैसा कि ई में इलेक्ट्रोस्टैटिक स्थितियों में शून्य का कर्ल होता है, यह उसी का अनुसरण करता है

इस समीकरण के प्रभाव को एक वस्तु के मामले में देखा जा सकता है जो एक बार इलेक्ट्रेट, एक बार चुंबक के विद्युत एनालॉग जैसे ध्रुवीकरण में जमी हुई है। ऐसी सामग्री में कोई मुक्त प्रभार नहीं है, लेकिन अंतर्निहित ध्रुवीकरण एक विद्युत क्षेत्र को जन्म देता है, यह प्रदर्शित करता है कि डी क्षेत्र पूरी तरह से मुक्त प्रभार से निर्धारित नहीं होता है। विद्युत क्षेत्र का निर्धारण ध्रुवीकरण घनत्व पर अन्य सीमा स्थितियों के साथ उपरोक्त संबंध का उपयोग करके बाध्य आवेशों को उत्पन्न करने के लिए किया जाता है, जो बदले में, विद्युत क्षेत्र उत्पन्न करेगा।

एक रैखिक, सजातीय स्थान में, विद्युत क्षेत्र में परिवर्तन के लिए तात्कालिक प्रतिक्रिया के साथ समदैशिक ढांकता हुआ, पी विद्युत क्षेत्र पर रैखिक रूप से निर्भर करता है,

जहां आनुपातिकता का स्थिरांक सामग्री की विद्युत संवेदनशीलता कहा जाता है। इस प्रकार
जहां ε = ε0 εr परावैद्युतांक है, और εr = 1 + χ सामग्री की सापेक्ष पारगम्यता

रैखिक, सजातीय, आइसोट्रोपिक मीडिया में, ε एक स्थिरांक है। हालांकि, रैखिक एनिस्ट्रोपिक मीडिया में यह एक टेन्सर है, और गैर-समरूप मीडिया में यह माध्यम के अंदर स्थिति का एक कार्य है। यह विद्युत क्षेत्र (गैर-रैखिक सामग्री) पर भी निर्भर हो सकता है और समय पर निर्भर प्रतिक्रिया हो सकती है। स्पष्ट समय निर्भरता तब उत्पन्न हो सकती है जब सामग्री भौतिक रूप से गतिमान हो या समय में बदल रही हो (उदाहरण के लिए एक गतिशील इंटरफ़ेस से प्रतिबिंब डॉपलर शिफ्ट को जन्म देते हैं)। समय-अपरिवर्तनीय माध्यम में समय पर निर्भरता का एक अलग रूप उत्पन्न हो सकता है, क्योंकि विद्युत क्षेत्र के आरोपण और सामग्री के परिणामी ध्रुवीकरण के बीच समय की देरी हो सकती है। इस मामले में, 'पी' आवेग प्रतिक्रिया संवेदनशीलता χ और विद्युत क्षेत्र 'ई' का एक संयोजन है। ऐसा कनवल्शन आवृत्ति डोमेन में एक सरल रूप लेता है: फूरियर द्वारा संबंध को बदलने और कनवल्शन प्रमेय को लागू करने से, एक रैखिक समय-अपरिवर्तनीय माध्यम के लिए निम्नलिखित संबंध प्राप्त होता है:

कहाँ लागू क्षेत्र की आवृत्ति है। कार्य-कारण की बाधा क्रेमर्स-क्रोनिग संबंधों की ओर ले जाती है, जो आवृत्ति निर्भरता के रूप पर सीमाएं लगाती हैं। आवृत्ति-निर्भर पारगम्यता की घटना फैलाव संबंध का एक उदाहरण है। वास्तव में, सभी भौतिक सामग्रियों में कुछ भौतिक फैलाव होता है क्योंकि वे लागू क्षेत्रों में तत्काल प्रतिक्रिया नहीं दे सकते हैं, लेकिन कई समस्याओं के लिए (जो एक संकीर्ण पर्याप्त बैंडविड्थ (सिग्नल प्रोसेसिंग) से संबंधित हैं) ε की आवृत्ति-निर्भरता को उपेक्षित किया जा सकता है।

एक सीमा पर, , जहां पf मुक्त आवेश घनत्व और इकाई सामान्य है मध्यम 2 से मध्यम 1 की दिशा में इंगित करता है।[1]


इतिहास

गॉस का नियम 1835 में कार्ल फ्रेडरिक गॉस द्वारा तैयार किया गया था, लेकिन 1867 तक प्रकाशित नहीं हुआ था।[2] इसका अर्थ है कि डी का सूत्रीकरण और उपयोग 1835 से पहले नहीं था, और शायद 1860 के दशक से पहले नहीं था।

शब्द का सबसे पहला ज्ञात उपयोग वर्ष 1864 से जेम्स क्लर्क मैक्सवेल के पेपर ए डायनेमिकल थ्योरी ऑफ द इलेक्ट्रोमैग्नेटिक फील्ड में है। मैक्सवेल ने माइकल फैराडे के सिद्धांत को प्रदर्शित करने के लिए कलन का उपयोग किया, कि प्रकाश एक विद्युत चुम्बकीय घटना है। मैक्सवेल ने आधुनिक और परिचित नोटेशन से भिन्न रूप में डी, इलेक्ट्रिक इंडक्शन की विशिष्ट क्षमता शब्द की शुरुआत की।[3] यह ओलिवर हीविसाइड था जिसने जटिल मैक्सवेल के समीकरणों को आधुनिक रूप में सुधारा। 1884 तक हीविसाइड, विलार्ड गिब्स और हेनरिक हर्ट्ज़ के साथ समवर्ती रूप से, समीकरणों को एक अलग सेट में एक साथ समूहीकृत किया। चार समीकरणों का यह समूह मैक्सवेल के समीकरणों का इतिहास था#शब्द मैक्सवेल के समीकरणों को हर्ट्ज-हेविसाइड समीकरणों और मैक्सवेल-हर्ट्ज़ समीकरणों के रूप में, और कभी-कभी मैक्सवेल-हेविसाइड समीकरणों के रूप में भी जाना जाता है; इसलिए, यह शायद हीविसाइड था जिसने डी को वर्तमान महत्व दिया था जो अब है।

== उदाहरण: एक संधारित्र == में विस्थापन क्षेत्र

एक समानांतर प्लेट संधारित्र। एक काल्पनिक बॉक्स का उपयोग करके, विद्युत विस्थापन और मुक्त आवेश के बीच संबंध को समझाने के लिए गॉस के नियम का उपयोग करना संभव है।

एक अनंत समानांतर प्लेट संधारित्र पर विचार करें जहां प्लेटों के बीच का स्थान खाली है या एक तटस्थ, इन्सुलेटिंग माध्यम है। इस मामले में धातु संधारित्र प्लेटों को छोड़कर कोई मुक्त शुल्क मौजूद नहीं है। चूँकि फ्लक्स रेखाएँ D मुक्त आवेशों पर समाप्त होती हैं, और दोनों प्लेटों पर विपरीत चिन्ह के समान रूप से वितरित आवेशों की समान संख्या होती है, तो फ्लक्स रेखाओं को केवल संधारित्र को एक तरफ से दूसरी तरफ ले जाना चाहिए, और |D| = 0 कैपेसिटर के बाहर। SI इकाइयों में, प्लेटों पर आवेश घनत्व प्लेटों के बीच D क्षेत्र के मान के बराबर होता है। यह कैपेसिटर की एक प्लेट को फैलाकर एक छोटे से आयताकार बॉक्स पर एकीकृत करके, गॉस के नियम से और धे अनुसरण करता है:

\oiint

बॉक्स के किनारों पर, डीए क्षेत्र के लंबवत है, इसलिए इस खंड पर अभिन्न शून्य है, जैसा कि चेहरे पर अभिन्न है जो संधारित्र के बाहर है जहां डी शून्य है। इंटीग्रल में योगदान देने वाली एकमात्र सतह इसलिए कैपेसिटर के अंदर बॉक्स की सतह है, और इसलिए

जहां ए बॉक्स के शीर्ष चेहरे का सतह क्षेत्र है और धनात्मक प्लेट पर मुक्त पृष्ठीय आवेश घनत्व है। यदि संधारित्र प्लेटों के बीच की जगह पारगम्यता के साथ एक रैखिक सजातीय आइसोट्रोपिक ढांकता हुआ से भरी हुई है , तो माध्यम में एक ध्रुवीकरण प्रेरित होता है, और इसलिए प्लेटों के बीच वोल्टेज का अंतर है
जहाँ d उनका पृथक्करण है।

ढांकता हुआ परिचय एक कारक से ε बढ़ता है और या तो प्लेटों के बीच वोल्टेज का अंतर इस कारक से छोटा होगा, या चार्ज अधिक होना चाहिए। ढांकता हुआ क्षेत्रों के आंशिक रद्दीकरण से संधारित्र की दो प्लेटों पर प्रति यूनिट संभावित गिरावट की तुलना में बड़ी मात्रा में मुफ्त चार्ज की अनुमति मिलती है, अगर प्लेटों को वैक्यूम से अलग किया जाता।

यदि एक परिमित समानांतर प्लेट संधारित्र की प्लेटों के बीच की दूरी उसके पार्श्व आयामों की तुलना में बहुत कम है हम इसे अनंत मामले का उपयोग करके अनुमानित कर सकते हैं और इसकी समाई प्राप्त कर सकते हैं


यह भी देखें

संदर्भ

  1. David Griffiths. इलेक्ट्रोडायनामिक्स का परिचय (3rd 1999 ed.).
  2. कार्ल फ्रेडरिक गॉस वेर्के (कार्ल फ्रीड्रिक गॉस का काम). Gottingen. 1867. p. 3.{{cite book}}: CS1 maint: location missing publisher (link)
  3. A Dynamical Theory of the Electromagnetic Field PART V. — THEORY OF CONDENSERS, page 494[full citation needed]