डिराक समुद्र

From Vigyanwiki
Revision as of 23:57, 17 March 2023 by alpha>Shubham
एक विशाल कण के लिए डिराक समुद्र। <अवधि शैली = पृष्ठभूमि:#ef3; रंग:#000; > •  कण,  •  प्रतिकण

डिराक समुद्र नकारात्मक ऊर्जा वाले कणों के अनंत समुद्र के रूप में निर्वात का एक सैद्धांतिक मॉडल है। यह पहली बार 1930 में यूनाइटेड किंगडम के भौतिक विज्ञानी पॉल डिराक द्वारा पोस्ट किया गया था[1] सापेक्षता इलेक्ट्रॉनों के सिद्धांत (प्रकाश की गति के निकट यात्रा करने वाले इलेक्ट्रॉनों) के लिए डायराक समीकरण द्वारा भविष्यवाणी की गई विषम नकारात्मक-ऊर्जा क्वांटम अवस्थाओं की व्याख्या करने के लिए।[2] 1932 में इसकी प्रायोगिक खोज से पहले पोजीट्रान, इलेक्ट्रॉन छेद प्रतिपदार्थ प्रतिरूप, मूल रूप से डिराक समुद्र में एक इलेक्ट्रॉन छिद्र के रूप में माना गया था।[nb 1]

छेद सिद्धांत में, नकारात्मक समय विकास कारकों के साथ समाधान[clarification needed] को कार्ल डेविड एंडरसन द्वारा खोजे गए पॉज़िट्रॉन का प्रतिनिधित्व करने के रूप में पुनर्व्याख्या की जाती है। इस परिणाम की व्याख्या के लिए एक डिराक समुद्र की आवश्यकता है, यह दर्शाता है कि डिराक समीकरण केवल विशेष सापेक्षता और क्वांटम यांत्रिकी का संयोजन नहीं है, बल्कि इसका अर्थ यह भी है कि कणों की संख्या को संरक्षित नहीं किया जा सकता है।[3] डिराक समुद्र सिद्धांत को क्वांटम क्षेत्र सिद्धांत द्वारा विस्थापित कर दिया गया है, हालांकि वे गणितीय रूप से संगत हैं।

उत्पत्ति

याकोव फ्रेनकेल पर समान विचार # सबसे प्रसिद्ध खोजों का समय 1926 में सोवियत भौतिक विज्ञानी याकोव फ्रेनकेल द्वारा विकसित किया गया था, लेकिन इस बात का कोई संकेत नहीं है कि इस अवधारणा पर डिराक के साथ चर्चा की गई थी जब दोनों 1928 की गर्मियों में सोवियत भौतिकी कांग्रेस में मिले थे।

Dirac समुद्र की उत्पत्ति Dirac समीकरण के हैमिल्टनियन (क्वांटम यांत्रिकी) में निहित है, विशेष सापेक्षता के अनुरूप श्रोडिंगर समीकरण का एक विस्तार, एक समीकरण जिसे Dirac ने 1928 में तैयार किया था। हालांकि यह समीकरण इलेक्ट्रॉन गतिकी का वर्णन करने में बेहद सफल था, इसमें एक विशिष्ट विशेषता है: प्रत्येक क्वांटम राज्य के लिए एक सकारात्मक ऊर्जा होती है E, ऊर्जा के साथ एक संगत अवस्था है -E. जब एक पृथक इलेक्ट्रॉन पर विचार किया जाता है तो यह कोई बड़ी कठिनाई नहीं है, क्योंकि इसकी ऊर्जा ऊर्जा का संरक्षण है और नकारात्मक-ऊर्जा इलेक्ट्रॉनों को छोड़ा जा सकता है। हालांकि, जब विद्युत चुम्बकीय क्षेत्र के प्रभावों पर विचार किया जाता है, तो कठिनाइयाँ उत्पन्न होती हैं, क्योंकि एक सकारात्मक-ऊर्जा इलेक्ट्रॉन लगातार फोटोन का उत्सर्जन करके ऊर्जा को बहाने में सक्षम होगा, एक ऐसी प्रक्रिया जो असीमित रूप से जारी रह सकती है क्योंकि इलेक्ट्रॉन हमेशा कम ऊर्जा वाले राज्यों में उतरता है। हालाँकि, वास्तविक इलेक्ट्रॉन स्पष्ट रूप से इस तरह व्यवहार नहीं करते हैं।

डिराक का इसका समाधान पाउली अपवर्जन सिद्धांत पर भरोसा करना था। इलेक्ट्रॉन फर्मियन हैं, और बहिष्करण सिद्धांत का पालन करते हैं, जिसका अर्थ है कि कोई भी दो इलेक्ट्रॉन एक परमाणु के भीतर एक ही ऊर्जा अवस्था को साझा नहीं कर सकते हैं। डिराक ने परिकल्पना की कि जिसे हम शून्य के रूप में सोचते हैं वह वास्तव में वह अवस्था है जिसमें सभी नकारात्मक-ऊर्जा अवस्थाएँ भरी होती हैं, और कोई भी सकारात्मक-ऊर्जा अवस्था नहीं होती है। इसलिए, यदि हम एक इलेक्ट्रॉन को पेश करना चाहते हैं, तो हमें इसे एक सकारात्मक-ऊर्जा अवस्था में रखना होगा, क्योंकि सभी नकारात्मक-ऊर्जा अवस्थाएँ व्याप्त हैं। इसके अलावा, भले ही इलेक्ट्रॉन फोटॉन उत्सर्जित करके ऊर्जा खो देता है, इसे शून्य ऊर्जा से नीचे गिरने से मना किया जाएगा।

डिराक ने आगे बताया कि ऐसी स्थिति हो सकती है जिसमें एक को छोड़कर सभी नकारात्मक-ऊर्जा अवस्थाएं व्याप्त हों। नकारात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र में यह छेद विद्युत क्षेत्रों के प्रति प्रतिक्रिया करेगा जैसे कि यह एक सकारात्मक रूप से आवेशित कण हो। प्रारंभ में, डिराक ने इस छिद्र को एक प्रोटॉन के रूप में पहचाना। हालांकि, रॉबर्ट ओपेनहाइमर ने बताया कि एक इलेक्ट्रॉन और उसका छिद्र एक दूसरे को नष्ट करने में सक्षम होंगे, इलेक्ट्रॉन की बाकी ऊर्जा के क्रम में ऊर्जा को ऊर्जावान फोटॉनों के रूप में जारी करेंगे; यदि छेद प्रोटॉन होते, तो स्थिर परमाणु मौजूद नहीं होते।[4] हरमन वेइल ने यह भी नोट किया कि एक छिद्र को ऐसा कार्य करना चाहिए जैसे कि उसका द्रव्यमान एक इलेक्ट्रॉन के समान हो, जबकि प्रोटॉन लगभग दो हजार गुना भारी होता है। इस मुद्दे को अंततः 1932 में हल किया गया था, जब कार्ल डेविड एंडरसन द्वारा पॉज़िट्रॉन की खोज की गई थी, जिसमें डायराक छेद के लिए सभी भौतिक गुणों की भविष्यवाणी की गई थी।

डिराक समुद्र की अपरूपता

इसकी सफलता के बावजूद, डिराक समुद्र का विचार लोगों को उतना सुंदर नहीं लगता। समुद्र के अस्तित्व का तात्पर्य एक अनंत नकारात्मक विद्युत आवेश से है जो पूरे स्थान को भर देता है। इसका कोई मतलब निकालने के लिए, किसी को यह मान लेना चाहिए कि नंगे निर्वात में एक अनंत सकारात्मक चार्ज घनत्व होना चाहिए जो कि डायराक समुद्र द्वारा बिल्कुल रद्द कर दिया गया हो। चूँकि पूर्ण ऊर्जा घनत्व अप्राप्य है - ब्रह्माण्ड संबंधी स्थिरांक एक तरफ - निर्वात का अनंत ऊर्जा घनत्व एक समस्या का प्रतिनिधित्व नहीं करता है। केवल ऊर्जा घनत्व में परिवर्तन देखने योग्य हैं। जेफ्री लैंडिस (डिराक सागर में लहरें के लेखक, एक कठिन विज्ञान कथा लघु कहानी) भी नोट करते हैं[citation needed] कि पाउली अपवर्जन का निश्चित रूप से यह अर्थ नहीं है कि एक भरा हुआ डिराक समुद्र अधिक इलेक्ट्रॉनों को स्वीकार नहीं कर सकता है, क्योंकि ग्रैंड होटल के हिल्बर्ट के विरोधाभास के रूप में, अनंत सीमा का समुद्र भरे होने पर भी नए कणों को स्वीकार कर सकता है। यह तब होता है जब हमारे पास चिरल विसंगति और गेज एक पल होता है।

1930 के दशक में क्वांटम फील्ड थ्योरी (QFT) के विकास ने डायराक समीकरण को इस तरह से सुधारना संभव बना दिया, जो पॉज़िट्रॉन को एक कण की अनुपस्थिति के बजाय एक वास्तविक कण के रूप में मानता है, और निर्वात को वह अवस्था बनाता है जिसमें कोई कण मौजूद नहीं है। कणों के अनंत समुद्र के बजाय। यह तस्वीर बहुत अधिक ठोस है, खासकर जब से यह डायराक समुद्र की सभी मान्य भविष्यवाणियों को पुनः प्राप्त करता है, जैसे कि इलेक्ट्रॉन-पॉज़िट्रॉन विनाश। दूसरी ओर, क्षेत्र सूत्रीकरण डायराक समुद्र द्वारा उठाई गई सभी कठिनाइयों को समाप्त नहीं करता है; विशेष रूप से निर्वात ऊर्जा की समस्या।

गणितीय अभिव्यक्ति

मुक्त डायराक समीकरण को हल करने पर,

एक पाता है[5]

कहाँ

के साथ विमान तरंग समाधान के लिए 3-गति p. यह सापेक्षतावादी ऊर्जा-संवेग संबंध का प्रत्यक्ष परिणाम है

जिस पर डिराक समीकरण निर्मित होता है। मात्रा U स्थिरांक है 2 × 1 कॉलम वेक्टर और N एक सामान्यीकरण स्थिरांक है। मात्रा ε को समय विकास कारक कहा जाता है, और इसी तरह की भूमिकाओं में इसकी व्याख्या, उदाहरण के लिए, श्रोडिंगर समीकरण के समतल तरंग समाधान, तरंग (कण) की ऊर्जा है। यह व्याख्या यहाँ तुरंत उपलब्ध नहीं है क्योंकि यह नकारात्मक मान प्राप्त कर सकती है। इसी तरह की स्थिति क्लेन-गॉर्डन समीकरण के लिए प्रचलित है। उस स्थिति में, का निरपेक्ष मान ε को तरंग की ऊर्जा के रूप में व्याख्या किया जा सकता है क्योंकि विहित औपचारिकता में, नकारात्मक के साथ तरंगें ε वास्तव में सकारात्मक ऊर्जा है Ep.[6] लेकिन डिराक समीकरण के साथ ऐसा नहीं है। विहित औपचारिकता में ऊर्जा नकारात्मक से जुड़ी है ε है Ep.[7]


आधुनिक व्याख्या

Dirac समुद्र व्याख्या और आधुनिक QFT व्याख्या एक बहुत ही सरल बोगोलीबॉव परिवर्तन के रूप में सोची जा सकती है, जो दो अलग-अलग मुक्त क्षेत्र सिद्धांतों के निर्माण और विनाश ऑपरेटरों के बीच एक पहचान है।[citation needed] आधुनिक व्याख्या में, डायराक स्पिनर के लिए फील्ड ऑपरेटर एक योजनाबद्ध संकेतन में सृजन ऑपरेटरों और विलोपन ऑपरेटरों का योग है:

नकारात्मक आवृत्ति वाला एक ऑपरेटर किसी भी राज्य की ऊर्जा को आवृत्ति के आनुपातिक राशि से कम करता है, जबकि सकारात्मक आवृत्ति वाले ऑपरेटर किसी भी राज्य की ऊर्जा को बढ़ाते हैं।

आधुनिक व्याख्या में, सकारात्मक आवृत्ति संचालक एक सकारात्मक ऊर्जा कण जोड़ते हैं, ऊर्जा में जोड़ते हैं, जबकि नकारात्मक आवृत्ति संचालक एक सकारात्मक ऊर्जा कण का विनाश करते हैं, और ऊर्जा को कम करते हैं। एक फर्मीओनिक क्षेत्र के लिए, निर्माण और विनाश संचालक शून्य देता है जब गति के साथ राज्य पहले से ही भरा हुआ है, जबकि विनाश ऑपरेटर शून्य देता है जब गति के साथ राज्य खाली होता है।

लेकिन फिर एक नकारात्मक ऊर्जा कण के लिए एक सृजन संचालक के रूप में सर्वनाश संकारक की फिर से व्याख्या करना संभव है। यह अभी भी निर्वात की ऊर्जा को कम करता है, लेकिन इस दृष्टि से यह एक नकारात्मक ऊर्जा वस्तु बनाकर ऐसा करता है। यह पुनर्व्याख्या केवल दर्शन को प्रभावित करती है। नियमों को पुन: उत्पन्न करने के लिए जब निर्वात में विनाश शून्य देता है, तो नकारात्मक ऊर्जा राज्यों के लिए खाली और भरे जाने की धारणा को उलट देना चाहिए। बिना एंटीपार्टिकल वाले राज्य होने के बजाय, ये ऐसे राज्य हैं जो पहले से ही एक नकारात्मक ऊर्जा कण से भरे हुए हैं।

मूल्य यह है कि कुछ भावों में एक असमानता है, क्योंकि विनाश को सृजन के साथ बदलने से नकारात्मक ऊर्जा कण संख्या में एक निरंतरता जुड़ जाती है। फर्मी फील्ड के लिए नंबर ऑपरेटर[8] है:

जिसका अर्थ है कि यदि कोई नकारात्मक ऊर्जा अवस्थाओं के लिए N को 1-N से प्रतिस्थापित करता है, तो ऊर्जा और आवेश घनत्व जैसी मात्राओं में निरंतर बदलाव होता है, मात्राएँ जो कणों की कुल संख्या की गणना करती हैं। अनंत स्थिरांक डायराक समुद्र को एक अनंत ऊर्जा और आवेश घनत्व देता है। निर्वात आवेश घनत्व शून्य होना चाहिए, क्योंकि निर्वात लोरेंत्ज़ अपरिवर्तनीय है, लेकिन यह डिराक की तस्वीर में व्यवस्थित करने के लिए कृत्रिम है। जिस तरह से यह किया जाता है वह आधुनिक व्याख्या को पारित कर रहा है।

डिराक का विचार सीधे तौर पर ठोस अवस्था भौतिकी पर लागू होता है, जहां एक ठोस में संयोजी बंध को इलेक्ट्रॉनों के समुद्र के रूप में माना जा सकता है। इस समुद्र में छेद वास्तव में होते हैं, और अर्धचालकों के प्रभावों को समझने के लिए अत्यंत महत्वपूर्ण हैं, हालांकि उन्हें कभी भी पॉज़िट्रॉन नहीं कहा जाता है। कण भौतिकी के विपरीत, एक अंतर्निहित धनात्मक आवेश है - क्रिस्टल संरचना का आवेश - जो समुद्र के विद्युत आवेश को रद्द कर देता है।

कारण फर्मियन सिस्टम के सिद्धांत में पुनरुद्धार

कणों के समुद्र की डिराक की मूल अवधारणा को कारण फर्मियन प्रणाली के सिद्धांत में पुनर्जीवित किया गया था, जो एक एकीकृत भौतिक सिद्धांत के लिए एक हालिया प्रस्ताव था। इस दृष्टिकोण में, डायराक समुद्र की अनंत निर्वात ऊर्जा और अनंत आवेश घनत्व की समस्याएं गायब हो जाती हैं क्योंकि ये विचलन कारण क्रिया सिद्धांत के माध्यम से तैयार किए गए भौतिक समीकरणों से बाहर हो जाते हैं।[9] इन समीकरणों को पहले से मौजूद स्पेस-टाइम की आवश्यकता नहीं होती है, जिससे इस अवधारणा को साकार करना संभव हो जाता है कि स्पेस-टाइम और उसमें मौजूद सभी संरचनाएं एक दूसरे के साथ और अतिरिक्त कणों और छेदों के साथ समुद्री राज्यों की सामूहिक बातचीत के परिणामस्वरूप उत्पन्न होती हैं। समुद्र।

यह भी देखें

टिप्पणियाँ

  1. This was not the original intent of Dirac though, as the title of his 1930 paper (A Theory of Electrons and Protons) indicates. But it soon afterwards became clear that the mass of holes must be that of the electron.

टिप्पणियाँ


संदर्भ

  • Alvarez-Gaume, Luis; Vazquez-Mozo, Miguel A. (2005). "Introductory Lectures on Quantum Field Theory". CERN Yellow Report CERN. 1 (96): 2010–001. arXiv:hep-th/0510040. Bibcode:2005hep.th...10040A.
  • Dirac, P. A. M. (1930). "A Theory of Electrons and Protons". Proc. R. Soc. Lond. A. 126 (801): 360–365. Bibcode:1930RSPSA.126..360D. doi:10.1098/rspa.1930.0013. JSTOR 95359.
  • Dirac, P. A. M. (1931). "Quantized Singularities In The Electromagnetic Fields". Proc. R. Soc. A. 133 (821): 60–72. Bibcode:1931RSPSA.133...60D. doi:10.1098/rspa.1931.0130. JSTOR 95639.
  • Finster, F. (2011). "A formulation of quantum field theory realizing a sea of interacting Dirac particles". Lett. Math. Phys. 97 (2): 165–183. arXiv:0911.2102. Bibcode:2011LMaPh..97..165F. doi:10.1007/s11005-011-0473-1. ISSN 0377-9017. S2CID 39764396.
  • Greiner, W. (2000). Relativistic Quantum Mechanics. Wave Equations (3rd ed.). Springer Verlag. ISBN 978-3-5406-74573. (Chapter 12 is dedicate to hole theory.)
  • Sattler, K. D. (2010). Handbook of Nanophysics: Principles and Methods. CRC Press. pp. 10–4. ISBN 978-1-4200-7540-3. Retrieved 2011-10-24.