एंटीना माप

From Vigyanwiki
Revision as of 20:35, 3 April 2023 by alpha>SprashM

एंटीना माप तकनीक एंटीना (रेडियो) के परीक्षण को संदर्भित करती है ताकि यह सुनिश्चित किया जा सके कि एंटीना विनिर्देशों को पूरा करती है या केवल इसे चिह्नित करने के लिए करते है। एंटेना के विशिष्ट पैरामीटर वृद्धि, बैंडविड्थ, विकिरण पैटर्न, दिशात्मक , ध्रुवीकरण (तरंगें), और प्रतिबाधा हैं।

ऐन्टेना पैटर्न किसी दिए गए दिशा से समतल तरंग की घटना के लिए ऐन्टेना की प्रतिक्रिया है या किसी दिए गए दिशा में ऐन्टेना द्वारा प्रेषित तरंग की सापेक्ष शक्ति घनत्व है। व्युत्क्रम ऐन्टेना के लिए, ये दो पैटर्न समान हैं। एंटीना पैटर्न मापन तकनीकों की समूह विकसित किया गया है। विकसित की गई पहली तकनीक सुदूर-क्षेत्र की सीमा थी, जहाँ परीक्षण के अंतर्गत एंटीना (एयूटी) को सीमा एंटीना के सुदूर-क्षेत्र में रखा जाता है। बड़े एंटेना के लिए सुदूर-क्षेत्र की सीमा बनाने के लिए आवश्यक आकार के कारण, निकट-क्षेत्र तकनीक विकसित की गई, जो ऐन्टेना के समीप की सतह पर क्षेत्र की माप की (सामान्य रूप से इसकी तरंग दैर्ध्य से 3 से 10 गुना होती है) स्वीकृति देती है। यह माप तब अनंत पर समान होने का अनुमान लगाया गया है। तीसरी सामान्य विधि सुसम्बद्ध सीमा है, जो परीक्षण के अंतर्गत एंटीना के पास क्षेत्र बनाने के लिए परावर्तक (एंटीना) का उपयोग करती है जो लगभग समतल तरंग की तरह दिखती है।

सुदूर-क्षेत्र सीमा (एफएफ)

सुदूर-क्षेत्र की सीमा मूल एंटीना माप तकनीक थी, और सबसे सरल थी; इसमें एंटीना को परीक्षण (एयूटी) के अंतर्गत यंत्र एंटीना से लंबी दूरी पर रखना सम्मिलित है। सामान्य रूप से, सुदूर-क्षेत्र की दूरी या फ्रौनहोफर दूरी माना जाता है

जहाँ किसी भी दिशा में एंटीना का सबसे चौड़ा व्यास है, और रेडियो तरंग की तरंग दैर्ध्य है।[1] इस दूरी से परीक्षण के अंतर्गत एंटीना और मानक प्राप्त एंटीना को अलग करने से दूर दूरी में एंटीना पैटर्न का उपयुक्त परिशुद्ध अनुमान प्राप्त करने के लिए पर्याप्त परीक्षण के अंतर्गत एंटीना में पता लगाने योग्य फेज भिन्नता कम हो जाती है।

विद्युत और इलेक्ट्रॉनिक्स इंजीनियर संस्थान ऐन्टेना मापन मानक (दस्तावेज़ आईडी विद्युत और इलेक्ट्रॉनिक्स इंजीनियर संस्थान-सॉफ्टवेयर अभियांत्रिकी शब्दावली का मानक शब्दकोष-149-1979), सुदूर-क्षेत्र सीमा और ग्राउंड-बाउंस सीमा (नीचे चर्चा की गई) दोनों के लिए माप और विभिन्न तकनीकों के लिए व्यवस्था का सुझाव देता है।

नियर-फील्ड सीमा (NF)

प्लानर नियर-फील्ड सीमा

प्लानर निकट और दूर का मैदान | नियर-फील्ड माप प्लानर सतह पर छोटे से जांच एंटीना को स्कैन करके आयोजित किया जाता है। इन मापों को फिर फूरियर रूपांतरण के उपयोग से सुदूर-क्षेत्र में बदल दिया जाता है, या अधिक विशेष रूप से स्थिर चरण के रूप में ज्ञात विधि को लागू करके[2] लाप्लास रूपांतरण के लिए। निकट क्षेत्र मापन में तीन मूल प्रकार के प्लानर स्कैन मौजूद हैं।

आयताकार तलीय स्कैनिंग

जांच कार्तीय समन्वय प्रणाली में चलती है और इसका रैखिक संचलन Δx = Δy = λ /2 की अधिकतम निकट-क्षेत्र नमूना रिक्ति के साथ नियमित आयताकार नमूना ग्रिड बनाता है।

पोलर प्लानर स्कैनिंग

आयताकार क्रमवीक्षण विधि का अधिक जटिल समाधान समतल ध्रुवीय क्रमवीक्षण विधि है।

PolarGrid.svg

द्वि-ध्रुवीय तलीय स्कैनिंग

द्वि-ध्रुवीय तकनीक समतल ध्रुवीय विन्यास के समान है।

BipolarGrid.svg

बेलनाकार निकट-क्षेत्र श्रेणी

बेलनाकार निकट-क्षेत्र पर्वतमाला परीक्षण के अंतर्गत एंटीना के समीप बेलनाकार सतह पर विद्युत क्षेत्र को मापती है। बेलनाकार हार्मोनिक्स का उपयोग इन मापों को सुदूर-क्षेत्र में बदलने के लिए किया जाता है।

CylindricalGrid.svg

गोलाकार निकट-क्षेत्र सीमा

गोलाकार निकट-क्षेत्र पर्वतमाला परीक्षण के अंतर्गत एंटीना के समीप गोलाकार सतह पर विद्युत क्षेत्र को मापती है। इन मापों को सुदूर-क्षेत्र में बदलने के लिए गोलाकार हार्मोनिक्स का उपयोग किया जाता है

फ्री-स्पेस सीमा

विद्युत चुम्बकीय विकिरण फैलाव और सूचना प्रसार का सूत्र है:

जहाँ D दूरी का प्रतिनिधित्व करता है, P शक्ति और S रफ़्तार।

समीकरण का अर्थ है कि संचार दूरी को दोगुना करने के लिए चार गुना शक्ति की आवश्यकता होती है। इसका अर्थ यह भी है कि दोहरी शक्ति दोहरी संचार गति (बिट दर) की स्वीकृति देती है। डबल पावर लगभग 3 डीबी वृद्धि है (या बिल्कुल 10×log10(2) ≈ 3.0103000 ). बेशक, वास्तविक दुनिया में सभी प्रकार की अन्य घटनाएं हैं जो अनुमानित वितरित शक्ति को जटिल बनाती हैं, जैसे फ्रेस्नेल रद्द करना, पथ हानि, पृष्ठभूमि शोर इत्यादि।

सुसम्बद्ध सीमा

सुसम्बद्ध एंटीना टेस्ट सीमा (सीएटीआर) सुविधा है जिसका उपयोग फ्रीक्वेंसी पर एंटीना सिस्टम के सुविधाजनक परीक्षण प्रदान करने के लिए किया जाता है जहां परीक्षण के अंतर्गत एंटीना के लिए सुदूर-क्षेत्र की दूरी प्राप्त करना पारंपरिक मुक्त स्थान विधियों का उपयोग करना असंभव होगा। इसका आविष्कार जॉर्जिया टेक रिसर्च इंस्टीट्यूट में रिचर्ड सी. जॉनसन ने किया था।[3] CATR स्रोत एंटीना का उपयोग करता है जो गोलाकार वेवफ्रंट और या से अधिक माध्यमिक परावर्तकों को रेडिएटेड गोलाकार वेवफ्रंट को वांछित परीक्षण क्षेत्र के भीतर प्लानर वेवफ्रंट में मिलाने के लिए उपयोग करता है। इसे पूरा करने के लिए विशिष्ट अवतार हॉर्न फीड एंटीना और परवलयिक परावर्तक का उपयोग करता है।

CATR का उपयोग माइक्रोवेव और मिलीमीटर तरंग आवृत्तियों के लिए किया जाता है जहाँ सुदूर-क्षेत्र की दूरी बड़ी है, जैसे उच्च-लाभ परावर्तक एंटेना के साथ। आवश्यक श्रेणी का आकार पूर्ण आकार के सुदूर-क्षेत्र के एनेकोइक कक्ष के लिए आवश्यक आकार से बहुत कम हो सकता है, हालांकि विशेष रूप से डिज़ाइन किए गए सीएटीआर परावर्तक के निर्माण की लागत परिशुद्ध सुनिश्चित करने की आवश्यकता के कारण महंगी हो सकती है परावर्तक सतह (सामान्य रूप से से कम 1/100[[wavelength|λ]] RMS सतह सटीकता) और विवर्तित तरंगों से बचने के लिए विशेष रूप से परावर्तक के किनारे का इलाज करने के लिए जो वांछित बीम पैटर्न में हस्तक्षेप कर सकते हैं।

उन्नत सीमा

उच्च सीमा में, परीक्षण के अंतर्गत एंटीना और मापने वाले एंटीना दोनों को जमीन से परावर्तित तरंगों से हस्तक्षेप को कम करने के साधन के रूप में जमीन के ऊपर कई तरंग दैर्ध्य पर चढ़ाया जाता है।

तिरछी सीमा

झुकी हुई सीमा में, प्राप्त एंटीना को परीक्षण के अंतर्गत एंटीना की तुलना में जमीन से ऊपर रखा जाता है, या तो परीक्षण के अंतर्गत एंटीना माउंट से नीचे की ओर झुकी हुई सीमा की पृथ्वी की सतह के द्वारा, या बहुत अधिक मस्तूल पर एंटीना प्राप्त करके। झुकी हुई पृथ्वी (या तो वास्तविक या प्रभावी) सममित तरंग प्रतिबिंब से हस्तक्षेप को खत्म करने या कम करने के साधन के रूप में कार्य करती है, परावर्तित तरंगों को प्राप्त एंटीना के नीचे उछालने के लिए। सिद्धांत रूप में, समान तकनीक को रिवर्स में लागू किया जा सकता है, प्राप्त ऐन्टेना के ऊपर पृथ्वी-परावर्तित अधिकांश तरंगों को उछालने के लिए।

एंटीना पैरामीटर

ध्रुवीकरण को छोड़कर, उपरोक्त पैरामीटरों में SWR सबसे आसानी से मापा जाता है। प्रतिबाधा को विशेष उपकरणों से मापा जा सकता है, क्योंकि यह सम्मिश्र संख्या SWR से संबंधित है। विकिरण पैटर्न को मापने के लिए महत्वपूर्ण स्पष्ट स्थान सहित परिष्कृत सेटअप की आवश्यकता होती है (एंटीना के दूर क्षेत्र में सेंसर लगाने के लिए पर्याप्त है, या एंटीना माप के लिए डिज़ाइन किया गया अप्रतिध्वनिक कक्ष), प्रयोग ज्यामिति का सावधानीपूर्वक अध्ययन, और माप के दौरान ऐन्टेना को घुमाने वाले विशेष माप उपकरण .

विकिरण पैटर्न

विकिरण पैटर्न ऐन्टेना द्वारा प्रेषित या प्राप्त सापेक्ष क्षेत्र शक्ति का ग्राफिकल चित्रण है, और बैठक ्स और बैकलोब्स दिखाता है। चूंकि ऐन्टेना अंतरिक्ष में विकीर्ण होते हैं, ऐन्टेना का वर्णन करने के लिए अक्सर कई वक्र आवश्यक होते हैं। यदि ऐन्टेना का विकिरण अक्ष के बारे में सममित है (जैसा कि द्विध्रुव, पेचदार ऐन्टेना और कुछ परवलयिक ऐन्टेना एंटेना में होता है) अनूठा ग्राफ पर्याप्त है।

प्रत्येक एंटीना आपूर्तिकर्ता/उपयोगकर्ता के पास अलग-अलग मानकों के साथ-साथ प्लॉटिंग प्रारूप भी होते हैं। प्रत्येक प्रारूप के अपने फायदे और नुकसान हैं। एंटीना के विकिरण पैटर्न को उन सभी बिंदुओं के स्थान के रूप में परिभाषित किया जा सकता है जहां प्रति इकाई सतह पर उत्सर्जित शक्ति समान होती है। प्रति इकाई सतह से निकलने वाली शक्ति विद्युत चुम्बकीय तरंग के वर्ग विद्युत क्षेत्र के समानुपाती होती है। विकिरण पैटर्न समान विद्युत क्षेत्र वाले बिंदुओं का स्थान है। इस प्रतिनिधित्व में, संदर्भ सामान्य रूप से उत्सर्जन का सबसे अच्छा कोण होता है। दिशा के कार्य के रूप में ऐन्टेना के प्रत्यक्ष लाभ को चित्रित करना भी संभव है। प्राय: लाभ डेसीबल में दिया जाता है।

कार्तीय निर्देशांक प्रणाली | कार्तीय (आयताकार) निर्देशांक या ध्रुवीय समन्वय प्रणाली का उपयोग करके रेखांकन तैयार किए जा सकते हैं। यह आखिरी वाला बीमविड्थ को मापने के लिए उपयोगी है, जो कि सम्मेलन द्वारा, अधिकतम लाभ के आसपास -3 डीबी बिंदुओं पर कोण है। कार्तीय या ध्रुवीय निर्देशांक में और लॉगरिदमिक पैमाने की सीमाओं की पसंद के साथ घटता का आकार बहुत भिन्न हो सकता है। नीचे दिए गए चार आरेखण समान डिपोल एंटीना#हाफ-वेव डिपोल या डिपोल (लैम्ब्डा ओवर 2)|हाफ-वेव एंटीना के विकिरण पैटर्न हैं।

Radiation pattern of a half-wave dipole antenna. Linear scale.
Gain of a half-wave dipole. The scale is in dBi.
Gain of a half-wave dipole. Cartesian representation.
3D Radiation pattern of a half-wave dipole antenna.


दक्षता

दक्षता एंटीना द्वारा वास्तव में विकीर्ण की गई शक्ति का ट्रांसमीटर से प्राप्त विद्युत शक्ति का अनुपात है। डमी भार में 1:1 का स्टैंडिंग वेव अनुपात हो सकता है, लेकिन दक्षता 0 है, क्योंकि यह सभी घटना शक्ति को अवशोषित करता है, गर्मी पैदा करता है लेकिन कोई आकाशवाणी आवृति ऊर्जा नहीं देता है; स्थायी तरंग अनुपात ऐन्टेना की दक्षता का माप नहीं है। विकिरण प्रतिरोध ऐन्टेना द्वारा विकिरण के लिए खोई गई शक्ति के कारण होने वाले वर्तमान के प्रतिरोध का हिस्सा है। दुर्भाग्य से, इसे सीधे मापा नहीं जा सकता है लेकिन कुल विद्युत प्रतिरोध का घटक है जिसमें हानि प्रतिरोध सम्मिलित है। हानि प्रतिरोध सुसंगत रेडियो तरंगों के बजाय ऐन्टेना सामग्री में गर्मी के लिए खोई हुई शक्ति का परिणाम है, इस प्रकार दक्षता कम हो जाती है। क्षमता () को रेडियो तरंगों के रूप में सुसंगत रूप से विकिरित शक्ति के अनुपात के रूप में परिभाषित किया गया है () एंटीना द्वारा उपयोग की जाने वाली कुल शक्ति के लिए, जो सुसंगत रूप से विकिरित शक्ति का योग है () और शक्ति गर्मी के रूप में विकीर्ण होती है ():

ऐन्टेना दक्षता भी गणितीय रूप से विकिरण प्रतिरोध के बराबर है () कुल प्रतिरोध से विभाजित (वोल्टेज नोड पर मापा गया प्रतिबाधा का वास्तविक भाग, जो अक्सर फीड-पॉइंट होता है):


बैंडविड्थ

आईईईई बैंडविड्थ को आवृत्तियों की सीमा के रूप में परिभाषित करता है जिसके भीतर ऐन्टेना का प्रदर्शन, कुछ विशेषताओं के संबंध में, निर्दिष्ट मानक के अनुरूप होता है।[4] दूसरे शब्दों में, बैंडविड्थ आवृत्तियों की श्रृंखला के माध्यम से ऐन्टेना की समग्र प्रभावशीलता पर निर्भर करता है, इसलिए इन सभी मापदंडों को एंटीना की बैंडविड्थ क्षमताओं को पूरी तरह से समझने के लिए समझा जाना चाहिए। यह परिभाषा व्यावहारिक परिभाषा के रूप में काम कर सकती है, हालांकि, व्यवहार में, बैंडविड्थ सामान्य रूप से ब्याज की आवृत्ति सीमा पर एसडब्ल्यूआर या विकीर्ण शक्ति जैसी विशेषता को मापकर निर्धारित की जाती है। उदाहरण के लिए, SWR बैंडविड्थ सामान्य रूप से फ़्रीक्वेंसी सीमा को मापकर निर्धारित किया जाता है जहाँ SWR 2:1 से कम होता है। गुंजयमान एंटेना के लिए बैंडविड्थ का निर्धारण करने के लिए और अक्सर इस्तेमाल किया जाने वाला मूल्य है −3 dB रिटर्न लॉस वैल्यू, चूंकि एसडब्ल्यूआर के कारण नुकसान है −10·log10(2÷1)  =   −3.01000 dB .

प्रत्यक्षता

ऐन्टेना डायरेक्टिविटी अधिकतम विकिरण तीव्रता (भौतिकी) (शक्ति प्रति इकाई सतह) का अनुपात है जो ऐन्टेना द्वारा अधिकतम दिशा में विकीर्ण होती है और काल्पनिक आइसोट्रोपिक एंटीना द्वारा विकिरित तीव्रता से विभाजित होती है जो उस ऐन्टेना के समान कुल शक्ति को विकीर्ण करती है। उदाहरण के लिए, काल्पनिक ऐन्टेना जिसमें गोलार्ध (1/2 गोला) का विकिरणित पैटर्न था, उसकी 2 की डायरेक्टिविटी होगी। डायरेक्टिविटी आयाम रहित अनुपात है और इसे संख्यात्मक रूप से या डेसिबल (डीबी) में व्यक्त किया जा सकता है। डायरेक्टिविटी निर्देश लाभ के शिखर मूल्य के समान है; इन मूल्यों को एंटीना दक्षता के संबंध में निर्दिष्ट किए बिना निर्दिष्ट किया जाता है, इस प्रकार एंटीना लाभ (या केवल लाभ) से भिन्न होता है जिसका मूल्य एंटीना की एंटीना दक्षता से कम हो जाता है।

लाभ

लाभ पैरामीटर के रूप में किसी दिए गए एंटीना की दिशात्मकता को मापता है। कम लब्धि वाला एंटीना सभी दिशाओं में समान रूप से विकिरण उत्सर्जित करता है, जबकि उच्च लब्धि ऐन्टेना विशेष दिशाओं में तरजीह देता है। विशेष रूप से, एंटीना के लाभ या शक्ति लाभ को तीव्रता (भौतिकी) (शक्ति प्रति इकाई सतह) के अनुपात के रूप में परिभाषित किया जाता है, जो ऐन्टेना द्वारा दी गई दिशा में मनमाना दूरी पर समान दूरी पर विकीर्ण तीव्रता से विभाजित होता है। काल्पनिक आइसोट्रोपिक एंटीना:

हम काल्पनिक लिखते हैं क्योंकि आदर्श आइसोट्रोपिक एंटीना का निर्माण नहीं किया जा सकता है। लाभ आयामहीन संख्या है (इकाइयों के बिना)।

ऐन्टेना का लाभ निष्क्रिय घटना है - ऐन्टेना द्वारा शक्ति नहीं जोड़ी जाती है, लेकिन आइसोट्रोपिक ऐन्टेना द्वारा प्रेषित की तुलना में निश्चित दिशा में अधिक विकीर्ण शक्ति प्रदान करने के लिए बस पुनर्वितरित किया जाता है। यदि ऐन्टेना का कुछ दिशाओं में से अधिक लाभ होता है, तो अन्य दिशाओं में इसका लाभ से कम होना चाहिए क्योंकि ऐन्टेना द्वारा ऊर्जा का संरक्षण किया जाता है। लाभ निर्धारित करते समय एंटीना डिजाइनर को एंटीना के लिए आवेदन को ध्यान में रखना चाहिए। उच्च-लाभ वाले एंटेना में लंबी दूरी और बेहतर सिग्नल गुणवत्ता का लाभ होता है, लेकिन किसी विशेष दिशा में सावधानी से लक्षित होना चाहिए। कम लाभ वाले एंटेना की सीमा कम होती है, लेकिन एंटीना का उन्मुखीकरण महत्वहीन होता है। उदाहरण के लिए, अंतरिक्ष यान पर डिश एंटीना उच्च-लाभ उपकरण है (प्रभावी होने के लिए ग्रह पर इंगित किया जाना चाहिए), जबकि लैपटॉप कंप्यूटर में विशिष्ट Wifi एंटीना कम-लाभ है (जब तक बेस स्टेशन सीमा के भीतर है) , ऐन्टेना अंतरिक्ष में किसी भी अभिविन्यास में हो सकता है)।

भौतिक पृष्ठभूमि

मापा विद्युत क्षेत्र विकीर्ण किया गया था सेकंड पहले।

विद्युत आवेश द्वारा निर्मित विद्युत क्षेत्र है

जहाँ:

  • निर्वात में प्रकाश की गति है।
  • परमिटिटिविटी #वैक्यूम परमिटिटिविटी है।
  • अवलोकन बिंदु से दूरी है (वह स्थान जहाँ मूल्यांकन किया जाता है) उस बिंदु तक जहां चार्ज था उस समय से सेकंड पहले जब माप किया जाता है।
  • अवलोकन बिंदु से निर्देशित इकाई वेक्टर है (वह स्थान जहां मूल्यांकन किया जाता है) उस बिंदु तक जहां चार्ज था उस समय से सेकंड पहले जब माप किया जाता है।

इस फॉर्मूले में प्राइम दिखाई देता है क्योंकि इलेक्ट्रोमैग्नेटिक सिग्नल प्रकाश की गति से यात्रा करता है। संकेतों को उस बिंदु से आने के रूप में देखा जाता है जहां वे उत्सर्जित हुए थे न कि उस बिंदु से जहां प्रेक्षण के समय उत्सर्जक है। जो तारे हम आकाश में देखते हैं वे अब वहां नहीं होते जहां हम उन्हें देखते हैं। हम उनकी वर्तमान स्थिति को भविष्य में देखेंगे; आज हम जिन सितारों को देखते हैं उनमें से कुछ अब मौजूद नहीं हैं।

सूत्र में पहला शब्द मंद समय के साथ सिर्फ इलेक्ट्रोस्टैटिक क्षेत्र है।

दूसरा शब्द ऐसा है जैसे कि प्रकृति इस तथ्य की स्वीकृति देने की कोशिश कर रही थी कि प्रभाव मंद है (फेनमैन)।

तीसरा शब्द एकमात्र ऐसा शब्द है जो एंटेना के सुदूर क्षेत्र के लिए खाता है।

पहले दो पद समानुपातिक हैं . केवल तीसरा आनुपातिक है .

एंटीना के पास, सभी शर्तें महत्वपूर्ण हैं। हालाँकि, यदि दूरी काफी बड़ी है, तो पहले दो पद नगण्य हो जाते हैं और केवल तीसरा बचता है:

विद्युत क्षेत्र वर्तमान के तत्व द्वारा विकीर्ण। वर्तमान का तत्व, विद्युत क्षेत्र वेक्टर और समान तल पर हैं।

यदि आवेश q आयाम के साथ ज्यावक्रीय गति में है

 और धड़कन   चार्ज द्वारा विकीर्ण शक्ति है:
वाट।

ध्यान दें कि विकिरणित शक्ति आवृत्ति की चौथी शक्ति के समानुपाती होती है। कम आवृत्तियों की तुलना में उच्च आवृत्तियों पर विकीर्ण करना कहीं अधिक आसान है। यदि आवेशों की गति धाराओं के कारण होती है, तो यह दिखाया जा सकता है कि (छोटा) विद्युत क्षेत्र छोटी लंबाई से विकीर्ण होता है समय परिवर्ती धारा प्रवाहित करने वाले चालक की है

इस समीकरण के बाईं ओर कंडक्टर की छोटी लंबाई से निकलने वाली विद्युत चुम्बकीय तरंग का विद्युत क्षेत्र है। अनुक्रमणिका याद दिलाता है कि क्षेत्र स्रोत की रेखा के लंबवत है। h> याद दिलाता है कि यह प्रेक्षित क्षेत्र है सेकंड वर्तमान व्युत्पन्न पर मूल्यांकन के बाद। कोना वर्तमान की दिशा और उस बिंदु की दिशा के बीच का कोण है जहां क्षेत्र को मापा जाता है।

विद्युत क्षेत्र और विकीर्ण शक्ति वर्तमान तत्व के लंबवत विमान में अधिकतम होती है। वे धारा की दिशा में शून्य हैं।

केवल समय-परिवर्तनशील धाराएँ विद्युत चुम्बकीय शक्ति विकीर्ण करती हैं।

यदि करंट साइनसोइडल है, तो इसे जटिल रूप में लिखा जा सकता है, उसी तरह प्रतिबाधाओं के लिए उपयोग किया जाता है। केवल वास्तविक भाग शारीरिक रूप से अर्थपूर्ण है:

जहाँ:

  • वर्तमान का आयाम है।
  • कोणीय आवृत्ति है।

करंट के तत्व द्वारा विकीर्ण विद्युत चुम्बकीय तरंग का (छोटा) विद्युत क्षेत्र है:

और समय के लिए :

तारों द्वारा निर्मित एंटीना द्वारा विकीर्ण विद्युत चुम्बकीय तरंग का विद्युत क्षेत्र विद्युत धारा के सभी छोटे तत्वों द्वारा विकिरित सभी विद्युत क्षेत्रों का योग होता है। यह जोड़ इस तथ्य से जटिल है कि प्रत्येक विद्युत क्षेत्र की दिशा और चरण सामान्य रूप से भिन्न होते हैं।

रिसेप्शन में एंटीना मापदंडों की गणना

किसी दिए गए दिशा में लाभ और दी गई आवृत्ति पर प्रतिबाधा समान होती है जब ऐन्टेना का उपयोग संचरण या स्वागत में किया जाता है।

विद्युत चुम्बकीय तरंग का विद्युत क्षेत्र सभी विद्युत कंडक्टरों में प्रत्येक छोटे खंड में छोटे से वोल्टेज को प्रेरित करता है। प्रेरित वोल्टेज विद्युत क्षेत्र और कंडक्टर की लंबाई पर निर्भर करता है। वोल्टेज खंड और विद्युत क्षेत्र के सापेक्ष अभिविन्यास पर भी निर्भर करता है।

प्रत्येक छोटा वोल्टेज धारा को प्रेरित करता है और ये धाराएं ऐन्टेना विद्युत प्रतिबाधा के छोटे से हिस्से के माध्यम से प्रसारित होती हैं। उन सभी धाराओं और तनावों का परिणाम तत्काल से बहुत दूर है। हालांकि, पारस्परिकता (विद्युत चुंबकत्व) का उपयोग करके, यह साबित करना संभव है कि प्राप्त ऐन्टेना के थेवेनिन समकक्ष सर्किट है:

अभिग्राही ऐन्टेना का समतुल्य परिपथ।

  • थेवेनिन समतुल्य परिपथ तनाव है।
  • थेवेनिन समकक्ष सर्किट प्रतिबाधा है और ऐन्टेना प्रतिबाधा के समान है।
  • ऐन्टेना प्रतिबाधा की श्रृंखला प्रतिरोधक हिस्सा है .
  • विद्युत चुम्बकीय तरंगों के आगमन की दिशा में ऐन्टेना (उत्सर्जन के समान) का प्रत्यक्ष लाभ है।
  • तरंग दैर्ध्य है।
  • आने वाली विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र का परिमाण है।
  • ऐन्टेना के साथ आने वाली तरंग के विद्युत क्षेत्र के गलत संरेखण का कोण है। द्विध्रुवीय ऐन्टेना के लिए, अधिकतम प्रेरित वोल्टेज तब प्राप्त होता है जब विद्युत क्षेत्र द्विध्रुव के समानांतर होता है। यदि ऐसा नहीं होता है और वे कोण से गलत संरेखित होते हैं , प्रेरित वोल्टेज गुणा किया जाएगा .
  • सार्वभौमिक स्थिरांक है जिसे निर्वात प्रतिबाधा या मुक्त स्थान का प्रतिबाधा कहा जाता है।

किसी भी प्रकार के एंटीना के लिए समतुल्य सर्किट और दाईं ओर सूत्र मान्य हैं। यह द्विध्रुवीय एंटीना, पाश एंटीना, परवलयिक एंटीना या एंटीना सरणी (विद्युत चुम्बकीय) भी हो सकता है।

इस सूत्र से निम्नलिखित परिभाषाओं को सिद्ध करना आसान है:

एंटीना प्रभावी लंबाई

वह लंबाई है, जिसे प्राप्त तरंग के विद्युत क्षेत्र से गुणा करके, थेवेनिन समकक्ष एंटीना सर्किट का वोल्टेज दिया जाता है।

अधिकतम उपलब्ध शक्ति

अधिकतम शक्ति है जो एंटीना आने वाली विद्युत चुम्बकीय तरंग से निकाल सकता है।

क्रॉस सेक्शन या प्रभावी कैप्चर सतह

वह सतह है जो आने वाली लहर की प्रति इकाई सतह की शक्ति से गुणा करती है, अधिकतम उपलब्ध शक्ति देती है।

विद्युत चुम्बकीय क्षेत्र से ऐन्टेना द्वारा निकाली जा सकने वाली अधिकतम शक्ति केवल ऐन्टेना के लाभ और वर्ग तरंग दैर्ध्य पर निर्भर करती है . यह एंटीना के आयामों पर निर्भर नहीं करता है।

समकक्ष सर्किट का उपयोग करके, यह दिखाया जा सकता है कि एंटीना इनपुट प्रतिबाधा से मेल खाने वाले लोड के साथ समाप्त होने पर एंटीना द्वारा अधिकतम शक्ति अवशोषित हो जाती है। इसका तात्पर्य यह भी है कि मेल खाने वाली परिस्थितियों में, प्राप्त ऐन्टेना द्वारा पुन: विकिरित शक्ति की मात्रा अवशोषित शक्ति के बराबर होती है।

यह भी देखें

संदर्भ

  1. Balanis, C.A. (2005). Antenna Theory: Analysis and design (3rd ed.). Wiley Interscience.
  2. Asymptotic Behavior of Monodromy, Springer Berlin / Heidelberg, 1991, ISBN 978-3-540-55009-9
  3. McLees, Lea. "जीटीआरआई एंटीना विशेषज्ञ और इंजीनियरिंग मेंटर का निधन". The Whistle (obituary). Georgia Institute of Technology. Retrieved 2011-11-09.
  4. एंटेना के लिए शर्तों की IEEE मानक परिभाषाएँ (Report). IEEE. June 1993. pp. 6, 21. IEEE Std 145-1993.


अग्रिम पठन

  • Brown, F. W. (November 1964). "How to Measure Antenna Gain". CQ. p. 40.