अनुमानक का पूर्वाग्रह

From Vigyanwiki
Revision as of 16:17, 13 April 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

सांख्यिकी में, अनुमानक (या अभिनत फलन) का अभिनत इस अनुमानक के अपेक्षित मान और अनुमानित पैरामीटर के वास्तविक मान के बीच का अंतर है। शून्य अभिनत वाला अनुमानक या निर्णय नियम अनभिनत कहलाता है। सांख्यिकी में, "अभिनत" एक अनुमानक की एक वस्तुगत गुण है। अभिनत संगति से एक अलग अवधारणा है: सुसंगत अनुमानक संभाव्यता में पैरामीटर के वास्तविक मान में अभिसरण करते हैं, लेकिन अभिनतपूर्ण या अनभिनत हो सकते हैं; अधिक जानकारी के लिए अभिनत बनाम निरंतरता देखें।

अन्य सभी समान होने के कारण, अनभिनत अनुमानक अभिनत अनुमानक के लिए अधिकतम है, हालांकि व्यवहार में, अभिनत अनुमानक (सामान्य रूप से छोटे अभिनत के साथ) प्रायः उपयोग किए जाते हैं। जब अभिनत अनुमानक का उपयोग किया जाता है, तो अभिनत की सीमा की गणना की जाती है। अभिनत अनुमानक का उपयोग विभिन्न कारणों से किया जा सकता है: क्योंकि समष्‍टि के बारे में और धारणाओं के बिना अनभिनत अनुमानक सम्मिलित नहीं है; क्योंकि एक अनुमानक की गणना करना कठिन है (मानक विचलन के अनभिनत अनुमान के रूप में); क्योंकि केंद्रीय प्रवृत्ति के विभिन्न समाधानों के संबंध में अभिनत अनुमानक अनभिनत हो सकता है; क्योंकि एक पक्षपाती अनुमानक निष्पक्ष अनुमानकों (विशेष रूप से अवमूल्यन अनुमानक में) की तुलना में कुछ हानि फलन (विशेष रूप से औसत वर्ग त्रुटि) का कम मान देता है; या क्योंकि कुछ स्थितियों में अनभिनत होना बहुत प्रबल स्थिति है, और सिर्फ अनभिनत अनुमानक उपयोगी नहीं होते हैं।

अभिनत को औसत (अपेक्षित मान) के अतिरिक्त माध्यिका के संबंध में भी मापा जा सकता है, इस स्थिति में सामान्य औसत-निष्पक्षता गुण से औसत-निष्पक्षता को अलग करता है। गैर-रैखिक डेटा परिवर्तन (सांख्यिकी) के अंतर्गत माध्य-निष्पक्षता संरक्षित नहीं है, हालांकि औसत-निष्पक्षता है (देखें § रूपांतरणों का प्रभाव); उदाहरण के लिए, प्रतिदर्श प्रसरण समष्‍टि प्रसरण के लिए अभिनत अनुमानक है। ये सभी नीचे सचित्र हैं।

परिभाषा

मान लीजिए कि हमारे पास एक सांख्यिकीय मॉडल है, जिसे वास्तविक संख्या θ द्वारा परिचालित किया गया है, जो देखे गए डेटा, के लिए प्रायिकता विभाजन को उत्पन्न करता है और एक आँकड़ा जो किसी भी देखे गए डेटा के आधार पर θ के अनुमानक के रूप में कार्य करता है अर्थात्, हम मानते हैं कि हमारा डेटा किसी अज्ञात विभाजन का अनुसरण करता है (जहां θ एक निश्चित, अज्ञात स्थिरांक है जो इस विभाजन का हिस्सा है), और फिर हम कुछ अनुमानक का निर्माण करते हैं मानचित्रों ने डेटा को उन मानों पर देखा जो हम आशा करते हैं कि वे θ के समीप हैं। का 'अभिनत' के सापेक्ष परिभाषित किया जाता है[1]

जहाँ विभाजन पर अपेक्षित मान दर्शाता है (अर्थात, सभी संभावित अवलोकनों का औसत ) दूसरा समीकरण अनुसरण करता है क्योंकि θ सशर्त विभाजन के संबंध में मापने योग्य है

अनुमानक को अनभिनत कहा जाता है यदि इसका अभिनत पैरामीटर θ के सभी मानों के लिए शून्य के बराबर है, या समतुल्य है, यदि अनुमानक का अपेक्षित मान पैरामीटर के समान होता है।[2]

अनुमानक के गुणों से संबंधित अनुकरण प्रयोग में, अनुमानित अंतर का उपयोग करके अनुमानक के अभिनत का आकलन किया जा सकता है।

उदाहरण

प्रतिदर्श प्रसरण

यादृच्छिक चर का प्रतिदर्श प्रसरण अनुमानक अभिनत के दो स्वरूप को प्रदर्शित करता है: सबसे पहले, सहज अनुमानक अभिनत है, जिसे मापन कारक द्वारा सही किया जा सकता है; दूसरा, अनभिनत अनुमानक माध्य औसत वर्ग त्रुटि (एमएसई) के स्थिति में इष्टतम नहीं है, जिसे एक अलग पैमाने के कारक का उपयोग करके कम किया जा सकता है, जिसके परिणामस्वरूप अनभिनत अनुमानक की तुलना में कम एमएसई वाला अभिनत अनुमानक होता है। मूर्त रूप से, सामान्य अनुमानक औसत वर्ग विचलन का योग करते हैं और n से विभाजित होते हैं, जो अभिनत है। इसके अतिरिक्त n − 1 से विभाजित करने पर अनभिनत अनुमानक प्राप्त होता है। इसके विपरीत, माध्य औसत वर्ग त्रुटि को एक अलग संख्या (विभाजन के आधार पर) से विभाजित करके कम किया जा सकता है, लेकिन इसका परिणाम अभिनत अनुमानक होता है। यह संख्या सदैव n − 1 से बड़ी होती है, इसलिए इसे अवमूल्यन अनुमानक के रूप में जाना जाता है, क्योंकि यह अनभिनत अनुमानक को शून्य की ओर अधिसंकुचन है; सामान्य विभाजन के लिए इष्टतम मान n + 1 है।

मान लीजिए कि X1, ..., Xn स्वतंत्र हैं और समान रूप से वितरित (i.i.d.) यादृच्छिक चर हैं जिनकी अपेक्षा μ और प्रसरण σ2 है। यदि प्रतिदर्श माध्य और असंशोधित प्रतिदर्श प्रसरण को इस प्रकार परिभाषित किया गया है

तब S2 σ2 का अभिनत अनुमानक है, क्योंकि