प्रतिअनुनाद

From Vigyanwiki
Revision as of 11:54, 1 April 2023 by alpha>Neetua08

युग्मित दोलक की भौतिकी में प्रतिध्वनि, प्रतिध्वनि के साथ सादृश्य द्वारा एक विशेष आवृत्ति पर दोलक के आयाम में एक स्पष्ट न्यूनतम है। इसके दोलन चरण (तरंगों) में एक बड़े अचानक बदलाव के साथ इस प्रकार की आवृत्तियों को भौतिक प्रणाली की एंटीरेज़ोनेंट आवृत्तियों के रूप में जाना जाता है। इन आवृत्तियों पर दोलन आयाम लगभग शून्य तक गिर सकता है। एंटीरेसोनेंस विनाशकारी हस्तक्षेप (तरंग प्रसार) के कारण होता है। एक बाहरी प्रेरक बल और दूसरे दोलक के साथ अंतःक्रिया के बीच का उदाहरण है।

यांत्रिकी, ध्वनिकी, विद्युत चुंबकत्व और क्वांटम यांत्रिकी प्रणालियों सहित सभी प्रकार के युग्मित दोलक प्रणालियों में प्रतिध्वनि उत्पन्न हो सकती है। जटिल युग्मित प्रणालियों के लक्षण वर्णन में उनके महत्वपूर्ण अनुप्रयोग हैं।

समान प्रभाव वाले एकल ऑसिलेटर में अनुनाद के रूप के लिए इलेक्ट्रिकल इंजीनियरिंग में एंटीरेसोनेंस शब्द का उपयोग किया जाता है।

इलेक्ट्रिकल इंजीनियरिंग में एंटीरेसोनेंस

विद्युत अभियन्त्रण में, प्रतिध्वनि वह स्थिति है जिसके लिए विद्युत प्रतिघात गायब हो जाता है और विद्युत प्रतिबाधा एक विद्युत परिपथ का मान बहुत अधिक है, अनंत तक पहुंच रहा है।

एक एलसी सर्किट से युक्त एक विद्युत सर्किट में, एंटीरेसोनेंस तब होता है जब प्रत्यावर्ती धारा लाइन वोल्टेज और परिणामी धारा चरण (तरंगों) में होती है।[1] इन स्थितियों के तहत प्रतिध्वनि पर समानांतर सर्किट के उच्च विद्युत प्रतिबाधा के कारण लाइन करंट बहुत छोटा होता है। शाखा धाराएँ परिमाण में लगभग बराबर और चरण में विपरीत होती हैं।[2]


युग्मित ऑसिलेटर्स में एंटीरेसोनेंस

आवृत्ति के एक समारोह के रूप में स्थिर-राज्य आयाम और दो युग्मित हार्मोनिक ऑसिलेटर्स का चरण।

सबसे सरल प्रणाली जिसमें प्रतिध्वनि उत्पन्न होती है, युग्मित हार्मोनिक ऑसिलेटर्स की एक प्रणाली है, उदाहरण के लिए लंगर या आरएलसी सर्किट

ताकत के साथ मिलकर दो हार्मोनिक ऑसीलेटर पर विचार करें g और एक थरथरानवाला बाहरी बल द्वारा संचालित एक थरथरानवाला के साथ F. स्थिति को युग्मित साधारण अंतर समीकरणों द्वारा वर्णित किया गया है

जहां ωi दो ऑसिलेटर्स की अनुनाद आवृत्तियों का प्रतिनिधित्व करता है और γi उनकी भिगोना अनुपात दर। वैरिएबल को जटिल संख्या पैरामीटर में बदलना:

हमें इन्हें प्रथम-क्रम समीकरणों के रूप में लिखने की अनुमति देता है:

हम ड्राइविंग आवृत्ति पर घूमते हुए एक फ्रेम में बदल जाते हैं

उपज

जहां हमने detunings पेश किया है Δi = ωωi ड्राइव और ऑसिलेटर्स की अनुनाद आवृत्तियों के बीच। अंत में, हम एक घूर्णन तरंग सन्निकटन बनाते हैं, जिसके अनुपात में तेजी से घूमने वाले शब्दों की उपेक्षा करते हैं e2iωt, जो उस समय के औसत से शून्य है, जिसमें हम रुचि रखते हैं (यह सन्निकटन यह मानता है ω + ωiωωi, जो अनुनादों के आसपास छोटी आवृत्ति श्रेणियों के लिए उचित है)। इस प्रकार हम प्राप्त करते हैं:

अवमंदन, चालन या युग्मन के बिना, इन समीकरणों के समाधान हैं:

जो परिसर में एक रोटेशन का प्रतिनिधित्व करते हैं α कोणीय आवृत्ति वाला तल Δ.

स्थिर अवस्था समाधान सेटिंग द्वारा पाया जा सकता है α̇1 = α̇2 = 0, जो देता है:

ड्राइविंग आवृत्ति के एक समारोह के रूप में इन स्थिर राज्य समाधानों की जांच, यह स्पष्ट है कि दोनों ऑसिलेटर दो सामान्य मोड आवृत्तियों पर अनुनाद (आयाम में चोटियों के साथ सकारात्मक चरण बदलाव) प्रदर्शित करते हैं। इसके अलावा, संचालित थरथरानवाला सामान्य मोड के बीच आयाम में एक स्पष्ट गिरावट प्रदर्शित करता है जो एक नकारात्मक चरण बदलाव के साथ होता है। यह प्रतिध्वनि है। ध्यान दें कि असंचालित ऑसिलेटर के फ्रीक्वेंसी स्पेक्ट्रम में कोई प्रतिध्वनि नहीं है; हालांकि इसका आयाम सामान्य मोड के बीच न्यूनतम है, कोई स्पष्ट डुबकी या नकारात्मक चरण बदलाव नहीं है।

विनाशकारी हस्तक्षेप के रूप में व्याख्या

एनिमेशन दो युग्मित पेंडुला के एंटीरेज़ोनेंट स्थिर-अवस्था में समय के विकास को दिखा रहा है। लाल तीर बाएं पेंडुलम पर कार्य करने वाली एक प्रेरक शक्ति का प्रतिनिधित्व करता है।

एक प्रतिध्वनि पर कम दोलन आयाम को विनाशकारी हस्तक्षेप (तरंग प्रसार) या ऑसिलेटर पर कार्य करने वाली शक्तियों को रद्द करने के कारण माना जा सकता है।

उपरोक्त उदाहरण में, प्रतिध्वनि आवृत्ति पर बाहरी प्रेरक बल F ऑसिलेटर 1 पर कार्य करने से ऑसिलेटर 2 के युग्मन के माध्यम से कार्य करने वाले बल को रद्द कर दिया जाता है, जिससे ऑसिलेटर 1 लगभग स्थिर रहता है।

जटिल युग्मित सिस्टम

स्वतंत्रता की कई डिग्री के साथ एक गतिशील प्रणाली का उदाहरण आवृत्ति-प्रतिक्रिया फ़ंक्शन, आयाम और चरण दोनों में विशिष्ट अनुनाद-प्रतिध्वनि व्यवहार दिखा रहा है।

कई युग्मित घटकों से बनी किसी भी रैखिक प्रणाली की आवृत्ति प्रतिक्रिया (FRF) सामान्य रूप से संचालित होने पर विशिष्ट प्रतिध्वनि-प्रतिध्वनि व्यवहार प्रदर्शित करेगी।[3]

अंगूठे के एक नियम के रूप में, यह कहा जा सकता है कि जैसे-जैसे संचालित घटक और मापा घटक के बीच की दूरी बढ़ती है, FRF में प्रतिध्वनि की संख्या घटती जाती है।[4] उदाहरण के लिए, उपरोक्त दो-थरथरानवाला स्थिति में, गैर-चालित दोलक के FRF ने कोई प्रतिध्वनि प्रदर्शित नहीं की। अनुनाद और प्रतिध्वनि केवल संचालित घटक के FRF में ही लगातार वैकल्पिक होते हैं।

अनुप्रयोग

एंटीरेसोनेंस के सिद्धांत में एक महत्वपूर्ण परिणाम यह है कि उन्हें उत्तेजना बिंदु पर तय की गई प्रणाली के प्रतिध्वनि के रूप में व्याख्या की जा सकती है।[4]इसे ऊपर दिए गए पेंडुलम एनीमेशन में देखा जा सकता है: स्थिर-अवस्था प्रतिध्वनि स्थिति वैसी ही है जैसे कि बाएं पेंडुलम को स्थिर किया गया था और दोलन नहीं किया जा सकता था। इस परिणाम का एक महत्वपूर्ण परिणाम यह है कि एक प्रणाली के एंटीरेसोनेंस संचालित ऑसिलेटर के गुणों से स्वतंत्र होते हैं; अर्थात्, यदि संचालित ऑसिलेटर की अनुनाद आवृत्ति या अवमंदन गुणांक बदल दिया जाता है तो वे नहीं बदलते हैं।

यह परिणाम प्रतिध्वनियों को जटिल युग्मित प्रणालियों के लक्षण वर्णन में उपयोगी बनाता है जिन्हें उनके घटक घटकों में आसानी से अलग नहीं किया जा सकता है। सिस्टम की अनुनाद आवृत्ति सभी घटकों और उनके युग्मन के गुणों पर निर्भर करती है, और स्वतंत्र होती है जो संचालित होती है। दूसरी ओर, प्रतिध्वनि, संचालित होने वाले घटक को छोड़कर सब कुछ पर निर्भर हैं, इसलिए यह जानकारी प्रदान करता है कि यह कुल प्रणाली को कैसे प्रभावित करता है। प्रत्येक घटक को बारी-बारी से चलाकर, उनके बीच कपलिंग के बावजूद, सभी व्यक्तिगत उप-प्रणालियों के बारे में जानकारी प्राप्त की जा सकती है। इस तकनीक में मैकेनिकल इंजीनियरिंग, संरचनात्मक विश्लेषण,[5] और एकीकृत यह कितना घूमता है का डिजाइन।[6] इलेक्ट्रिकल इंजीनियरिंग में एंटीरेसोनेंस का उपयोग लहर जाल में किया जाता है, जिसे कभी-कभी रेडियो रिसीवर के एंटीना (रेडियो) के साथ श्रृंखला में डाला जाता है ताकि एक इंटरफेरिंग स्टेशन की आवृत्ति पर प्रत्यावर्ती धारा के प्रवाह को अवरुद्ध किया जा सके, जबकि अन्य आवृत्तियों को पारित करने की अनुमति मिलती है।[7][8] नैनोमैकेनिकल सिस्टम में, एक चालित नॉनलाइनियर मोड का साइडबैंड स्पेक्ट्रा जिसकी ईजेनफ्रीक्वेंसी को कम आवृत्ति (<1 kHz) पर संशोधित किया जाता है, पावर स्पेक्ट्रा में प्रमुख एंटीरेसोनेंस लाइन आकार दिखाता है, जिसे कंपन स्थिति के माध्यम से नियंत्रित किया जा सकता है। एंटीरेसोनेंस फ्रीक्वेंसी का उपयोग थर्मल उतार-चढ़ाव और नॉनलाइनियर सिस्टम के निचोड़ने वाले पैरामीटर को चिह्नित करने के लिए किया जा सकता है। [9]


यह भी देखें

संदर्भ

  1. Kinsler, Lawrence E.; et al. (1999). ध्वनिकी की मूल बातें (4th hardcover ed.). Wiley. p. 46. ISBN 0-471-84789-5.
  2. Balanis, Constantine A. (2005). Antenna Theory: Analysis and Design (3rd hardcover ed.). Wiley Interscience. p. 195. ISBN 0-471-66782-X.
  3. Ewins, D. J. (1984). Modal Testing: Theory and Practice. New York: Wiley.
  4. 4.0 4.1 Wahl, F.; Schmidt, G.; Forrai, L. (1999). "प्रायोगिक संरचनात्मक विश्लेषण में प्रतिध्वनि आवृत्तियों के महत्व पर". Journal of Sound and Vibration. 219 (3): 379. Bibcode:1999JSV...219..379W. doi:10.1006/jsvi.1998.1831.
  5. Sjövall, P.; Abrahamsson, T. (2008). "युग्मित प्रणाली परीक्षण डेटा से उपसंरचना प्रणाली की पहचान". Mechanical Systems and Signal Processing. 22: 15. Bibcode:2008MSSP...22...15S. doi:10.1016/j.ymssp.2007.06.003.
  6. Sames, C.; Chibani, H.; Hamsen, C.; Altin, P. A.; Wilk, T.; Rempe, G. (2014). "दृढ़ता से युग्मित गुहा QED में प्रतिध्वनि चरण बदलाव". Physical Review Letters. 112: 043601. arXiv:1309.2228. Bibcode:2014PhRvL.112d3601S. doi:10.1103/PhysRevLett.112.043601. PMID 24580448.
  7. Pozar, David M. (2004). माइक्रोवेव इंजीनियरिंग (hardcover ed.). Wiley. p. 275. ISBN 0-471-44878-8.
  8. Sayre, Cotter W. (2008). पूरा वायरलेस डिजाइन (2nd hardcover ed.). McGraw-Hill Professional. p. 4. ISBN 0-07-154452-6.
  9. Yang, Fan; Fu, Mengqi; Bosnjak, Bojan; Blick, Robert H.; Jiang, Yuxuan; Scheer, Elke (26 October 2021). "यांत्रिक रूप से संशोधित साइडबैंड और मेम्ब्रेन रेज़ोनेटर के निचोड़ने वाले प्रभाव". Physical Review Letters. 127 (18): 184301. arXiv:2107.10355. doi:10.1103/PhysRevLett.127.184301.