कुंडलाकार डार्क-फील्ड इमेजिंग

From Vigyanwiki
Revision as of 14:52, 31 March 2023 by alpha>Indicwiki (Created page with "{{short description|Electron microscopy technique}} <!-- Image with unknown copyright status removed: Image:ReJEM2010F.jpg|thumb|right|"2010F STEM" The Jem 2010F [[scanning...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

कुंडलाकार डार्क-फील्ड इमेजिंग स्कैनिंग ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोप (एसटीईएम) में नमूनों की मैपिंग की एक विधि है। ये चित्र एक एनुलस (गणित) डार्क-फील्ड डिटेक्टर के साथ बिखरे हुए इलेक्ट्रॉनों को एकत्रित करके बनते हैं।[1] पारंपरिक ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी डार्क-फील्ड माइक्रोस्कोपी | डार्क-फील्ड इमेजिंग केवल बिखरे हुए इलेक्ट्रॉनों को इकट्ठा करने के लिए एक उद्देश्य एपर्चर का उपयोग करता है। इसके विपरीत, स्कैनिंग ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी डार्क-फील्ड इमेजिंग मुख्य बीम से बिखरे हुए इलेक्ट्रॉनों को अलग करने के लिए एपर्चर का उपयोग नहीं करता है, लेकिन केवल बिखरे हुए इलेक्ट्रॉनों को इकट्ठा करने के लिए कुंडलाकार डिटेक्टर का उपयोग करता है।[2] नतीजतन, पारंपरिक डार्क फील्ड इमेजिंग और एसटीईएम डार्क फील्ड के बीच कंट्रास्ट मैकेनिज्म अलग हैं।

पर्कोसाइट (संरचना) ऑक्साइड स्ट्रोंटियम टाइटेनेट (SrTiO) की परमाणु विभेदन छवि3) एक उच्च-कोण कुंडलाकार डार्क फील्ड (HAADF) डिटेक्टर के साथ लिया गया

एक कुंडलाकार डार्क फील्ड डिटेक्टर बीम के चारों ओर एक वलय से इलेक्ट्रॉनों को इकट्ठा करता है, एक वस्तुनिष्ठ छिद्र से गुजरने की तुलना में कहीं अधिक बिखरे हुए इलेक्ट्रॉनों का नमूना लेता है। यह सिग्नल संग्रह दक्षता के संदर्भ में एक लाभ देता है और मुख्य बीम को एक इलेक्ट्रॉन ऊर्जा हानि स्पेक्ट्रोस्कोपी (ईईएलएस) डिटेक्टर से गुजरने की अनुमति देता है, जिससे दोनों प्रकार के माप एक साथ किए जा सकते हैं। एनुलर डार्क फील्ड इमेजिंग भी आमतौर पर ऊर्जा-फैलाव एक्स-रे स्पेक्ट्रोस्कोपी अधिग्रहण के साथ समानांतर में की जाती है और इसे ब्राइट-फील्ड (एसटीईएम) इमेजिंग के समानांतर में भी किया जा सकता है।

एचएएडीएफ

हाई-एंगल कुंडलाकार डार्क-फील्ड इमेजिंग (HAADF) एक स्कैनिंग ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी तकनीक है जो डींग मारना के विपरीत बहुत उच्च कोण, असंगत रूप से बिखरे हुए इलेक्ट्रॉनों (परमाणुओं के नाभिक से रदरफोर्ड बिखराव ) द्वारा बनाई गई एक कुंडलाकार डार्क फील्ड छवि बनाती है। इलेक्ट्रॉनों। यह तकनीक नमूने में परमाणुओं की परमाणु संख्या (परमाणु संख्या-विपरीत छवियों) में भिन्नता के प्रति अत्यधिक संवेदनशील है।[3] उच्च परमाणु संख्या वाले तत्वों के लिए, नाभिक और इलेक्ट्रॉन बीम के बीच अधिक इलेक्ट्रोस्टैटिक इंटरैक्शन के कारण अधिक इलेक्ट्रॉन उच्च कोणों पर बिखरे हुए हैं। इस वजह से, HAADF डिटेक्टर उच्च Z वाले परमाणुओं से एक बड़े संकेत को महसूस करता है, जिससे वे परिणामी छवि में उज्जवल दिखाई देते हैं।[4][5] Z पर यह उच्च निर्भरता (इसके विपरीत लगभग Z के समानुपाती है2) HAADF को कम Z वाली सामग्री के मैट्रिक्स में उच्च Z वाले तत्व के छोटे क्षेत्रों को आसानी से पहचानने का एक उपयोगी तरीका बनाता है। इसे ध्यान में रखते हुए, HAADF के लिए एक सामान्य अनुप्रयोग विषम कटैलिसीस अनुसंधान में है, जैसा कि धातु के कणों के आकार और उनके वितरण का निर्धारण अत्यंत महत्वपूर्ण है।

संकल्प

एचएएडीएफ एसटीईएम में इमेज रेजोल्यूशन बहुत अधिक है और मुख्य रूप से इलेक्ट्रॉन जांच के आकार से निर्धारित होता है, जो बदले में वस्तुनिष्ठ चुंबकीय लेंस के विपथन, विशेष रूप से गोलाकार विपथन को ठीक करने की क्षमता पर निर्भर करता है। उच्च रिज़ॉल्यूशन इसे वापस बिखरे हुए इलेक्ट्रॉनों (BSE) का पता लगाने पर एक फायदा देता है, जिसका उपयोग निम्न Z वाले सामग्री के मैट्रिक्स में उच्च Z वाली सामग्री का पता लगाने के लिए भी किया जा सकता है।

माइक्रोस्कोप निर्दिष्टीकरण

HAADF इमेजिंग आमतौर पर> 5 ° (रदरफोर्ड स्कैटरिंग) के कोण पर बिखरे हुए इलेक्ट्रॉनों का उपयोग करती है। एक ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी/स्कैनिंग ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी पर इमेजिंग के लिए, इष्टतम HAADF इमेजिंग TEM/STEM सिस्टम द्वारा बड़े अधिकतम विवर्तन कोण और छोटी न्यूनतम कैमरा लंबाई के साथ प्रदान की जाती है। ये दोनों कारक ब्रैग और रदरफोर्ड बिखरे हुए इलेक्ट्रॉनों के बीच अधिक अलगाव की अनुमति देते हैं।

बड़े अधिकतम विवर्तन कोण उन सामग्रियों के लिए आवश्यक हैं जो ब्रैग को उच्च कोणों पर बिखरते हुए दिखाते हैं, जैसे कि कई क्रिस्टलीय सामग्री। उच्च अधिकतम विवर्तन कोण ब्रैग और रदरफोर्ड बिखरे हुए इलेक्ट्रॉनों के बीच अच्छे पृथक्करण की अनुमति देता है, इसलिए यह महत्वपूर्ण है कि माइक्रोस्कोप का अधिकतम विवर्तन कोण HAADF के उपयोग के लिए जितना संभव हो उतना बड़ा हो।

ब्रैग बिखरे हुए इलेक्ट्रॉनों का पता लगाने से परहेज करते हुए, डिटेक्टर को हिट करने के लिए रदरफोर्ड बिखरे हुए इलेक्ट्रॉनों के लिए एक छोटी कैमरा लंबाई की आवश्यकता होती है। एक छोटे से कैमरे की लंबाई के कारण अधिकांश ब्रैग बिखरे हुए इलेक्ट्रॉनों को प्रसारित इलेक्ट्रॉनों के साथ उज्ज्वल क्षेत्र डिटेक्टर पर गिरने का कारण होगा, केवल उच्च कोण बिखरे हुए इलेक्ट्रॉनों को डार्क फील्ड डिटेक्टर पर गिरने के लिए छोड़ दिया जाएगा।[1]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Otten, Max T. (1992). "High-Angle annular dark-field imaging on a tem/stem system". Journal of Electron Microscopy Technique (in English). 17 (2): 221–230. doi:10.1002/jemt.1060170209. ISSN 0741-0581. PMID 2013823.
  2. Weber, Juliane (2017). एटम प्रोब टोमोग्राफी और इलेक्ट्रॉन माइक्रोस्कोपी द्वारा बेराइट में रेडियम अपटेक में मौलिक अंतर्दृष्टि. ISBN 978-3-95806-220-7.
  3. DE Jesson; SJ Pennycook (1995). "ऊष्मीय रूप से बिखरे हुए इलेक्ट्रॉनों का उपयोग करके क्रिस्टल की असंगत इमेजिंग". Proc. R. Soc. A. 449 (1936): 273. Bibcode:1995RSPSA.449..273J. doi:10.1098/rspa.1995.0044.
  4. Nellist, P.D.; Pennycook, S.J. (2000), "The principles and interpretation of annular dark-field Z-contrast imaging", Advances in Imaging and Electron Physics, Elsevier, pp. 147–203, doi:10.1016/s1076-5670(00)80013-0, ISBN 9780120147557
  5. "इलेक्ट्रॉन माइक्रोस्कोपी घर". www.microscopy.ethz.ch. Archived from the original on 2018-08-14. Retrieved 2018-11-28.