गोल्डस्टोन बोसोन

From Vigyanwiki

कण भौतिकी और संघनित पदार्थ भौतिकी में, गोल्डस्टोन बोसोन या नंबू-गोल्डस्टोन बोसोन (एनजीबी) ऐसे बोसोन हैं जो निरंतर समरूपता को तोड़ते हुए सहज समरूपता प्रदर्शित करने वाले प्रतिरूप में अनिवार्य रूप से दिखाई देते हैं। वे बीसीएस सिद्धांत तंत्र के संदर्भ में कण भौतिकी में योइचिरो नाम्बु द्वारा खोजे गए थे,[1] और बाद में जेफरी गोल्डस्टोन द्वारा समझाया गया,[2] और परिमाण क्षेत्र सिद्धांत के संदर्भ में व्यवस्थित रूप से सामान्यीकृत है।[3] संघनित पदार्थ भौतिकी में ऐसे बोसोन किसिपार्टीकल होते हैं और एंडरसन-बोगोलीबॉव प्रणाली के रूप में जाने जाते हैं।[4][5][6]

ये स्पाइनलेस (भौतिकी) बोसॉन अनायास टूटे हुए आंतरिक समरूपता जनक के अनुरूप हैं, और इनमें से परिमाण संख्याओं की विशेषता है।

वे इन जनक की कार्रवाई के अनुसार गैर-रैखिक रूप से (स्थानान्तरण) बदलते हैं, और इस प्रकार इन जनक द्वारा असममित निर्वात से बाहर निकल सकते हैं। इस प्रकार, उन्हें समूह अंतरिक्ष में टूटी समरूपता दिशाओं में क्षेत्र के उत्तेजनाओं के रूप में माना जा सकता है- और द्रव्यमान कण हैं यदि स्वाभाविक रूप से टूटी हुई समरूपता स्पष्टतया अवदारित भी नहीं है।

यदि, इसके स्थान पर, समरूपता सटीक नहीं है, अर्थात यदि यह स्पष्ट रूप से टूटा हुआ है और साथ ही स्वाभाविक रूप से टूटा हुआ है, तो नंबू-गोल्डस्टोन बोसोन द्रव्यमान रहित नहीं हैं, हालांकि वे सामान्यतः अपेक्षाकृत हल्के रहते हैं; इसके बाद उन्हें स्यूडो-गोल्डस्टोन बोसोन या स्यूडो-नंबू-गोल्डस्टोन बोसोन (संक्षिप्त पीएनजीबी) कहा जाता है।

गोल्डस्टोन का प्रमेय

गोल्डस्टोन का प्रमेय एक सामान्य निरंतर समरूपता की जांच करता है जो सहज समरूपता को तोड़ती है; यानी, इसकी धाराएँ संरक्षित हैं, लेकिन संबंधित आवेशों की कार्रवाई के अनुसार आद्य स्थिति अपरिवर्तनीय नहीं है। फिर, आवश्यक रूप से, नए द्रव्यमान रहित (या प्रकाश, यदि समरूपता सटीक नहीं है) अदिश क्षेत्र सिद्धांत कण संभावित उत्तेजना के वर्णक्रम में दिखाई देते हैं। समरूपता के प्रत्येक जनक के लिए एक अदिश कण है - जिसे नंबू-गोल्डस्टोन बोसोन कहा जाता है - जो टूट गया है, अर्थात, जो आद्य स्थिति को संरक्षित नहीं करता है। नम्बू-गोल्डस्टोन प्रणाली संबंधित कोटि प्राचल का एक लंबी-तरंग दैर्ध्य उतार-चढ़ाव है।

संबंधित समरूपता-टूटे सिद्धांत के निर्वात में युग्मन में उनके विशेष गुणों के आधार पर, क्षेत्र-सैद्धांतिक आयामों में सम्मिलित लुप्त होने वाली गति (मुलायम) गोल्डस्टोन बोसोन ऐसे आयामों को विलुप्त कर देते हैं (एडलर शून्य)।

उदाहरण

प्राकृतिक

  • तरल पदार्थों में, फ़ोनॉन अनुदैर्ध्य है और यह अनायास टूटी हुई गैलिलियन समरूपता का गोल्डस्टोन बोसोन है। ठोस पदार्थों में स्थिति अधिक जटिल होती है; गोल्डस्टोन बोसोन अनुदैर्ध्य और अनुप्रस्थ ध्वनि परिमाण हैं और वे गोल्डस्टोन प्रणाली और टूटी हुई समरूपता के बीच कोई सरल एक-से-एक पत्राचार के साथ अनायास टूटे हुए गैलिलियन, स्थानांतरीय और घूर्णी समरूपता के गोल्डस्टोन बोसोन होते हैं।
  • चुम्बक में, मूल घूर्णी समरूपता (बाहरी चुंबकीय क्षेत्र की अनुपस्थिति में उपस्थित) अनायास टूट जाती है जैसे कि चुंबकन एक विशिष्ट दिशा में इंगित करता है। गोल्डस्टोन बोसोन तो मैगनॉन हैं, यानी, चक्रण तरंगें जिसमें स्थानीय चुंबकीयकरण दिशा दोलन करती है।
  • पिओन्स चिराल समरूपता तोड़ने वाले हैं। छद्म-गोल्डस्टोन बोसोन जो कि शक्तिशाली पारस्परिक प्रभाव के कारण क्वार्क संघनन द्वारा प्रभावित क्यूसीडी के चिरल-स्वाद समरूपता के सहज टूटने से उत्पन्न होते हैं। इन समरूपताओं को क्वार्कों के द्रव्यमानों द्वारा और अधिक स्पष्ट रूप से तोड़ा जाता है ताकि पाइऑन द्रव्यमानहीन न हों, लेकिन उनका द्रव्यमान विशिष्ट हैड्रोन द्रव्यमानों की तुलना में काफी छोटा होता है।
  • W और Z बोसोन के अनुदैर्ध्य ध्रुवीकरण घटक विद्युत् दुर्बल समरूपता SU(2)⊗U(1) के अनायास टूटे हुए हिस्से के गोल्डस्टोन बोसोन के अनुरूप हैं, जो, हालांकि, देखने योग्य नहीं हैं।[nb 1] क्योंकि इस समरूपता का अनुमान लगाया गया है, तीन-होने वाले गोल्डस्टोन बोसोन तीन टूटे हुए जनक के अनुरूप तीन गेज बोसॉन द्वारा अवशोषित किए जाते हैं; यह इन तीन गेज बोसॉनों को एक द्रव्यमान और संबंधित आवश्यक तीसरे ध्रुवीकरण की स्वतंत्रता की घात देता है। यह हिग्स तंत्र के माध्यम से मानक प्रतिरूप में वर्णित है। अतिचालकता में एक समान घटना होती है, जो नंबू के लिए प्रेरणा के मूल स्रोत के रूप में कार्य करती है, अर्थात्, फोटॉन एक गतिशील द्रव्यमान विकसित करता है (एक अतिसंवाहक से चुंबकीय प्रवाह बहिष्करण के रूप में व्यक्त), सीएफ. गिन्ज़बर्ग-लैंडौ सिद्धांत है।
  • रिकियार्डी और उमेज़ावा ने 1967 में नाम्बू-गोल्डस्टोन बोसोन के संदर्भ में स्मृति भंडारण और पुनर्प्राप्ति के संभावित मस्तिष्क तंत्र के बारे में एक सामान्य सिद्धांत (परिमाण ब्रेन) प्रस्तावित किया।[7] इस सिद्धांत को बाद में 1995 में ग्यूसेप विटिलो द्वारा इस बात को ध्यान में रखते हुए विस्तारित किया गया था कि मस्तिष्क एक खुली प्रणाली (मस्तिष्क का विघटनकारी परिमाण प्रतिरूप) है।[8] स्वाभाविक समतुल्यता विभंजन और गोल्डस्टोन के प्रमेय के जैविक प्रणालियों के अनुप्रयोगों को सामान्य रूप से ई. डेल गिउडिस, एस. डोगलिया, एम. मिलानी और जी. विटिलो और ई. डेल गिउडिस, जी. प्रिपराटा और जी. विटिल्लो द्वारा प्रकाशित किया गया है।[9],[10] [11] माली जिब प्रपोजल डी कंट्री ओया पॉटरी[12] और ग्यूसेप विटिलो[13] ने इन निष्कर्षों के आधार पर, चेतना के निहितार्थों पर चर्चा की।

सिद्धांत

एक जटिल अदिश क्षेत्र ϕ पर विचार करें, जिसमें एक स्थिरांक बाधा है। इस प्रकार की बाधा को लागू करने का एक तरीका इसके लैग्रैंगियन घनत्व में एक संभावित अंतःक्रिया शब्द को सम्मिलित करना है,

और सीमा के रूप में λ → ∞ ले रहा है। इसे एबेलियन अरैखिक σ-प्रतिरूप कहा जाता है।[nb 2]

बाधा, और कार्रवाई, नीचे, U (1) चरण परिवर्तन के अनुसार δϕ=iεϕ अपरिवर्तनीय हैं। एक वास्तविक अदिश क्षेत्र (यानी, एक स्पाइन-शून्य कण) देने के लिए क्षेत्र θ को फिर से बिना किसी असहजता के परिभाषित किया जा सकता है

जहाँ θ नम्बू-गोल्डस्टोन बोसोन है (वस्तुतः है) और U (1) समरूपता परिवर्तन एक बदलाव θ को प्रभावित करता है, अर्थात्

लेकिन आद्य स्थिति |0〉को संरक्षित नहीं करता है (अर्थात् उपरोक्त अतिसूक्ष्म परिवर्तन इसे नष्ट नहीं करता है - निश्चरता की पहचान), जैसा कि नीचे की धारा के आवेश में स्पष्ट है।

इस प्रकार, अनायास टूटी हुई समरूपता की क्रिया के अनुसार निर्वात पतित और अपरिवर्तनशील होता है।

इसे लाग्रंगियन घनत्व द्वारा दिया गया है

और इस तरह

ध्यान दें कि स्थिर शब्द लाग्रंगियन घनत्व में कोई भौतिक महत्व नहीं है, और इसमें दूसरा शब्द द्रव्यमान रहित अदिश के लिए गतिज शब्द है।

समरूपता-प्रेरित संरक्षित U(1) धारा है

आवेश, Q, इस वर्तमान बदलाव से उत्पन्न होता है θ और आद्य अवस्था एक नए, पतित, आद्य स्तिथि में। इस प्रकार,〈θ〉 = 0 वाला एक निर्वातθ〉 = ε के साथ एक अलग निर्वात में स्थानांतरित हो जाएगा। धारा मूल निर्वात को 〈0|J0(0)|θ〉≠ 0 नम्बू-गोल्डस्टोन बोसॉन अवस्था से जोड़ती है।

सामान्यतः, कई अदिश क्षेत्रों वाले सिद्धांत में, ϕj, नम्बू-गोल्डस्टोन प्रणाली ϕg द्रव्यमान रहित कण है, और संभव (पतित) निर्वात अवस्थाओं के वक्र को मापता है। टूटी हुई समरूपता परिवर्तन के अनुसार इसकी पहचान गैर-शून्य निर्वात अपेक्षा δϕgहै, विलुप्त होने के लिए एक कोटि प्राचल ϕg〉 = 0, कुछ आद्य अवस्था |0〉में क्षमता के न्यूनतम 〈∂V/∂ϕi〉 = 0 पर चुना गया। सिद्धांत रूप में निर्वात न्यूनतम प्रभावी क्रिया होनी चाहिए जो परिमाण प्रभावों को ध्यान में रखती है, हालांकि यह पहले सन्निकटन की शास्त्रीय क्षमता के बराबर है। समरूपता तय करती है कि सभी समरूपता दिशाओं में क्षेत्रों के संबंध में क्षमता के सभी रूपांतर विलुप्त हो जाते हैं। किसी भी दिशा में पहले क्रम की भिन्नता का निर्वात मान विलुप्त हो जाता है जैसा कि अभी देखा गया है; जबकि दूसरे क्रम की भिन्नता का निर्वात मान भी विलुप्त हो जाना चाहिए, जैसा कि निम्नानुसार है। क्षेत्र समरूपता परिवर्तन वेतन वृद्धि के लुप्त होने वाले निर्वात मूल्यों में कोई नई जानकारी नहीं है।

इसके विपरीत, हालांकि, परिवर्तन वृद्धि की गैर-लुप्त होने वाली निर्वात अपेक्षाएं, δϕg, द्रव्यमान आव्यूह के प्रासंगिक (गोल्डस्टोन) अशक्त आइजन्वेक्टर निर्दिष्ट करें,

और इसलिए संगत शून्य-द्रव्यमान अभिलक्षणिक मान है।

गोल्डस्टोन का तर्क

गोल्डस्टोन के तर्क के पीछे सिद्धांत यह है कि आद्य अवस्था अद्वितीय नहीं है। सामान्यतः, वर्तमान संरक्षण द्वारा, किसी भी समरूपता के लिए प्रभार संचालक समय-स्वतंत्र होता है,

निर्वात पर प्रभार संचालक के साथ कार्य करना या तो निर्वात को समाप्त कर देता है, अगर वह सममित है; अन्यथा, यदि नहीं, जैसा कि स्वतःस्फूर्त समरूपता को तोड़ने में होता है, तो यह ऊपर दिखाए गए बदलाव परिवर्तन सुविधा के माध्यम से, इसमें से एक शून्य-आवृत्ति स्थिति उत्पन्न करता है। वस्तुतः, यहाँ, आवेश ही अपरिभाषित है, cf. नीचे फेब्री-पिकासो तर्क।

लेकिन इसके बेहतर व्यवहार वाले दिक्परिवर्तक क्षेत्रक के साथ, यानी गैर-विलुप्त होने वाले परिवर्तन δϕgमें बदलाव करते हैं, फिर भी, समय-अपरिवर्तनीय हैं,

इस प्रकार इसके फूरियर रूपांतरण में एक δ(k0) उत्पन्न कर रहा है।[14] (यह सुनिश्चित करता है कि, एक गैर-विलुप्त होने वाले वर्तमान दिक्परिवर्तक में मध्यवर्ती स्तिथियों का एक पूरा सम्मुच्चय डालने से समय-विकास विलुप्त हो सकता है, जब इनमें से एक या अधिक स्तिथि द्रव्यमानहीन होते हैं।)

इस प्रकार, यदि निर्वात समरूपता के अनुसार अपरिवर्तनीय नहीं है, तो प्रभार संचालक की क्रिया एक ऐसी स्थिति उत्पन्न करती है जो चुने गए निर्वात से भिन्न होती है, लेकिन जिसकी आवृत्ति शून्य होती है। यह एक क्षेत्र का एक लंबी-तरंग दैर्ध्य दोलन है जो लगभग स्थिर है: शून्य आवृत्ति वाली भौतिक अवस्थाएँ k0 हैं, ताकि सिद्धांत में द्रव्यमान अंतराल न हो सके।

सीमा को ध्यान से लेने पर इस तर्क को और स्पष्ट किया जाता है। यदि एक विशाल लेकिन परिमित क्षेत्र A में अभिनय करने वाला एक अनुमानित प्रभार संचालक निर्वात पर लागू होता है,

लगभग विलुप्त होने वाले समय के व्युत्पन्न के साथ एक स्तिथि का उत्पादन होता है,

एक गैर-विलुप्त होने वाले द्रव्यमान अंतर m0 को मानते हुए, ऊपर की तरह किसी भी स्तिथि की आवृत्ति, जो निर्वात के लिए आयतीय है, कम से कम m0 है,

A को बड़ा होने देना एक विरोधाभास की ओर ले जाता है। फलस्वरूप m0= 0 होता है। हालांकि यह तर्क तब विफल हो जाता है जब समरूपता का अनुमान लगाया जाता है, क्योंकि तब समरूपता जनक केवल एक गेज परिवर्तन कर रहा होता है। एक गेज रूपांतरित स्थिति एक ही सटीक स्थिति है, ताकि समरूपता जनक के साथ कार्य करने से एक निर्वात से बाहर न निकले (हिग्स तंत्र देखें)।

फैब्री-पिकासो प्रमेय। Q हिल्बर्ट स्थल में ठीक से उपस्थित नहीं है, जब तक कि Q|0〉 = 0.

तर्क[15][16] निर्वात और प्रभार Q दोनों P|0〉 = 0, [P,Q]= 0 की अनुवादक रूप से अपरिवर्तनीय होने के लिए आवश्यकता होती है।

प्रभार के सहसंबंध फलन पर विचार करें,

इसलिए दाहिने हाथ की ओर का समाकलन स्थिति पर निर्भर नहीं करता है।

इस प्रकार, इसका मान कुल अंतरिक्ष आयतन के समानुपाती होता है, - जब तक समरूपता अखंड Q|0〉 = 0 न हो। फलस्वरूप, Q हिल्बर्ट स्थल में ठीक से उपस्थित नहीं है।

निम्नकण

प्रमेय में एक विवादास्पद बचाव का मार्ग है। यदि कोई प्रमेय को ध्यान से पढ़ता है, तो यह केवल यह बताता है कि स्वेच्छाचारी ढंग से छोटी ऊर्जा वाले गैर-निर्वात स्तिथि उपस्थित हैं। उदाहरण के लिए एक चिराल N = 1 अति QCD प्रतिरूप लें, जिसमें एक गैर-शून्य स्क्वार्क निर्वात अपेक्षा मान होता है जो अवरक्त में अनुरूप क्षेत्र सिद्धांत है। चिराल समरूपता एक वैश्विक समरूपता है जो (आंशिक रूप से) अनायास टूट जाती है। इस स्वतःस्फूर्त सममिति विखंडन से जुड़े गोल्डस्टोन बोसोन में से कुछ अभंग गेज समूह के अंतर्गत प्रभार किए जाते हैं और इसलिए, इन मिश्रित कण बोसॉनों में स्वेच्छाचारी ढंग से छोटे द्रव्यमान के साथ एक सतत मास वर्णक्रम होता है, लेकिन फिर भी बिल्कुल द्रव्यमान रहित कण के साथ कोई गोल्डस्टोन बोसोन नहीं होता है। दूसरे शब्दों में, गोल्डस्टोन बोसोन निम्नकण हैं।

विस्तारण

असापेक्ष सिद्धांत

गोल्डस्टोन के प्रमेय का एक संस्करण असापेक्ष सिद्धांतों पर भी लागू होता है।[17][18] यह अनिवार्य रूप से बताता है कि, प्रत्येक अनायास टूटी हुई समरूपता के लिए, कुछ अर्ध कण से मेल खाती है जो सामान्यतः एक बोसोन है और इसमें कोई ऊर्जा अंतर नहीं है। संघनित पदार्थ में इन गोल्डस्टोन बोसोन को अंतराल रहित प्रणाली भी कहा जाता है (अर्थात वे स्तिथि जहां ऊर्जा प्रकीर्णन संबंध समान है और के लिए शून्य है), द्रव्यमान रहित कणों का गैर-सापेक्ष संस्करण (अर्थात फोटॉन जहां प्रकीर्णन संबंध भी है और शून्य के लिए है)। ध्यान दें कि गैर-सापेक्षवादी संघनित पदार्थ की स्तिथि में ऊर्जा HμNαP है और H नहीं, जैसा कि एक सापेक्षतावादी स्तिथि में होगा। हालांकि, दो अलग-अलग अनायास टूटे जनक अब एक ही नंबू-गोल्डस्टोन बोसोन को उत्पन्न कर सकते हैं।

पहले उदाहरण के रूप में एक प्रतिलोह चुंबक में 2 गोल्डस्टोन बोसोन होते हैं, एक लोहचुंबक में 1 गोल्डोस्टोन बोसोन होते हैं, जहां दोनों ही स्तिथियों में हम SO(3) से SO(2) तक समरूपता तोड़ रहे हैं, प्रतिलोह चुंबक के लिए प्रकीर्णन है और लोहचुंबक के स्थान पर प्रकीर्णन के लिए आद्य स्थिति का अपेक्षित मूल्य शून्य है और आद्य स्थिति का अपेक्षित मूल्य शून्य नहीं है, यानी आद्य स्थिति के लिए सहज रूप से टूटी हुई समरूपता है [19][20]

दूसरे उदाहरण के रूप में, एक अतितरल में, -U(1) कण संख्या समरूपता और गैलिलियन समरूपता दोनों अनायास टूट जाती हैं। हालाँकि, फोनन दोनों के लिए गोल्डस्टोन बोसॉन है।[21][22] अभी भी समरूपता तोड़ने के संबंध में संघनित पदार्थ और हिग्स बोसोन में अंतराल रहित प्रणाली के बीच एक संकुचित सादृश्य भी है, उदा. अनुचुम्बकीय से लोह चुंबकीय चरण परिवर्तन में होता है[23][24]


समष्टि काल समरूपता का टूटना

आंतरिक समरूपता के टूटने की स्तिथि के विपरीत, जब समष्टि काल की समरूपता जैसे कि लोरेंत्ज़ समरूपता, अनुरूप, घूर्णी, या अनुवाद संबंधी समरूपता टूट जाती है, तो कोटि प्राचल को एक अदिश क्षेत्र नहीं होना चाहिए, लेकिन एक प्रदिश क्षेत्र और संख्या हो सकती है, स्वतंत्र द्रव्यमान विधाओं की संख्या अनायास टूटे हुए जनक की संख्या से कम हो सकती है। कोटि प्राचल वाले सिद्धांत के लिए, जो अनायास समष्टि काल समरूपता को तोड़ देता है, टूटे हुए जनित्र की संख्या गैर-तुच्छ स्वतंत्र समाधानों की संख्या घटाकर से

उत्पन्न होने वाले गोल्डस्टोन प्रणाली की संख्या है।[25] आंतरिक समरूपता के लिए, उपरोक्त समीकरण का कोई गैर-तुच्छ समाधान नहीं है, इसलिए सामान्य गोल्डस्टोन प्रमेय लागू होता है। जब समाधान उपस्थित होते हैं, तो ऐसा इसलिए होता है क्योंकि गोल्डस्टोन प्रणाली आपस में रैखिक रूप से निर्भर होते हैं, जिसमें परिणामी प्रणाली को दूसरे प्रणाली के अनुप्रवण के रूप में व्यक्त किया जा सकता है। समाधानों की समष्टि काल निर्भरता के बाद से अखंड जनक की दिशा में है, जब सभी अनुवाद जनक टूट गए हैं, कोई गैर-तुच्छ समाधान उपस्थित नहीं है और गोल्डस्टोन प्रणाली की संख्या एक बार फिर से टूटे जनक की संख्या है।

सामान्यतः, स्वचालित रूप से टूटी हुई अनुवाद समरूपता के लिए फोनन प्रभावी रूप से नंबू-गोल्डस्टोन बोसॉन है।

नम्बू-गोल्डस्टोन फर्मिऑन

स्वतःस्फूर्त रूप से टूटी हुई वैश्विक फ़र्मोनिक समरूपता, जो कुछ अतिसमतुल्यता प्रतिरूप में होती है, नंबू-गोल्डस्टोन फ़र्मियन या गोल्डस्टीनोस की ओर ले जाती है।[26][27] इनमें 0 के स्थान पर 1/2 घूर्णन है, और संबंधित अतिसमतुल्यता जनक के सभी परिमाण अंक अनायास टूट जाते हैं।

स्वतःस्फूर्त सुपरसममिति टूटती हुई सुपरमल्टीप्लेट संरचनाओं को टूटी हुई अतिसमतुल्यता की विशिष्ट अरैखिक प्राप्ति में तोड़ देती है ("कम कर देती है"), ताकि गोल्डस्टिनो सिद्धांत में सभी कणों के सुपरपार्टनर हों, किसी भी घूर्णन के, और उस पर एकमात्र सुपरपार्टनर हों। यानी दो गैर-गोल्डस्टिनो कण सुपरसममिति परिवर्तनों के माध्यम से केवल गोल्डस्टीनो से जुड़े हुए हैं, और एक दूसरे से नहीं, भले ही वे अतिसमतुल्यता के टूटने से पहले जुड़े हुए हों। नतीजतन, ऐसे कणों के द्रव्यमान और घूर्णन बहुलता तब स्वेच्छाचारी होती है।

यह भी देखें

  • स्यूडो-गोल्डस्टोन बोसोन
  • प्रमुख
  • हिग्स तंत्र
  • मर्मिन-वैगनर प्रमेय
  • निर्वात अपेक्षा मूल्य
  • नोथेर प्रमेय

टिप्पणियाँ

  1. In theories with gauge symmetry, the Goldstone bosons are absent. Their degrees of freedom are absorbed ("eaten", gauged out) by gauge bosons, through the Higgs mechanism. The latter become massive and their new, longitudinal polarization is provided by the would-be Goldstone boson, in an elaborate rearrangement of degrees of freedom .
  2. It corresponds to the Goldstone sombrero potential where the tip and the sides shoot to infinity, preserving the location of the minimum at its base.


संदर्भ

  1. Nambu, Y (1960). "सुपरकंडक्टिविटी के सिद्धांत में क्वासिपार्टिकल्स और गेज इनवेरियंस". Physical Review. 117 (3): 648–663. Bibcode:1960PhRv..117..648N. doi:10.1103/PhysRev.117.648.
  2. Goldstone, J (1961). "सुपरकंडक्टर समाधान के साथ क्षेत्र सिद्धांत". Nuovo Cimento. 19 (1): 154–164. Bibcode:1961NCim...19..154G. doi:10.1007/BF02812722. S2CID 120409034.
  3. Goldstone, J; Salam, Abdus; Weinberg, Steven (1962). "टूटी हुई समरूपता". Physical Review. 127 (3): 965–970. Bibcode:1962PhRv..127..965G. doi:10.1103/PhysRev.127.965.
  4. Anderson, P. W. (1958-05-15). "Coherent Excited States in the Theory of Superconductivity: Gauge Invariance and the Meissner Effect". Physical Review. American Physical Society (APS). 110 (4): 827–835. Bibcode:1958PhRv..110..827A. doi:10.1103/physrev.110.827. ISSN 0031-899X.
  5. Anderson, P. W. (1958-12-15). "सुपरकंडक्टिविटी के सिद्धांत में यादृच्छिक-चरण सन्निकटन". Physical Review. American Physical Society (APS). 112 (6): 1900–1916. Bibcode:1958PhRv..112.1900A. doi:10.1103/physrev.112.1900. ISSN 0031-899X.
  6. Bogoljubov, N. N.; Tolmachov, V. V.; Širkov, D. V. (1958). "सुपरकंडक्टिविटी के सिद्धांत में एक नई विधि". Fortschritte der Physik. Wiley. 6 (11–12): 605–682. Bibcode:1958ForPh...6..605B. doi:10.1002/prop.19580061102. ISSN 0015-8208.
  7. L.M. Ricciardi, H. Umezawa (1967). Brain and physics of many-body problems. Kybernetik, 4, 44–8. Reprinted in: Globus GG, Pribram K.H., Vitiello G., publishers. Brain and being. Amsterdam: John Benjamins. P. 255–66 (2004).
  8. G. Vitiello, (1995). Memory dissipation and capacity in the quantum brain model. Int. J. Mod. Phys. B9, 973-989.
  9. E. Del Giudice, S. Doglia, M. Milani, G. Vitiello (1985). A quantum field theoretical approach to the collective behavior of biological systems. Nucl. Phys., B251 (FS 13), 375 - 400.
  10. E. Del Giudice, S. Doglia, M. Milani, G. Vitiello (1986). Electromagnetic field and spontaneous symmetry breaking in biological matter. Nucl. Phys., B275 (FS 17), 185 - 199.
  11. E. Del Giudice, G. Preparata, G. Vitiello (1988). Water as a free electron laser. Phys. Rev. Lett., 61, 1085 – 1088.
  12. M. Jibu, K. Yasue (1995). Quantum brain dynamics and consciousness. Amsterdam: John Benjamins.
  13. Giuseppe Vitiello, My Double Unveiled - The dissipative quantum model of brain. John Benjamins Publ. Co., Amsterdam 2001.
  14. Scholarpedia proof of goldstone theorem - kibble
  15. Fabri, E.; Picasso, L. E. (1966-03-07). "क्वांटम फील्ड थ्योरी और अनुमानित समरूपता". Physical Review Letters. American Physical Society (APS). 16 (10): 408–410. Bibcode:1966PhRvL..16..408F. doi:10.1103/physrevlett.16.408.2. ISSN 0031-9007.
  16. Fabri dispense 1965
  17. https://www.theorie.physik.uni-muenchen.de/activities/lectures/twentyfourth_series/murayama_2/video_murayama_colloquium/index.html - min. 30-60
  18. Haruki Watanabe, Hitoshi Murayama, Unified Description of Nambu Goldstone Bosons without Lorentz invariance Phys. Rev. Lett. 108,251602,2012, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.251602
  19. min 42
  20. Fabri dispense 1965
  21. Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J. (2017). "गोल्डस्टोन मोड और एटॉमिक फर्मी सुपरफ्लुइड्स में पेयर-ब्रेकिंग एक्साइटमेंट". Nature Physics. 13 (10): 943–946. arXiv:1707.00406. Bibcode:2017NatPh..13..943H. doi:10.1038/nphys4187. S2CID 59392755.
  22. https://cds.cern.ch/record/311331/files/9609466.pdf[bare URL PDF]
  23. Lykken, Joseph; Spiropulu, Maria (2013). "हिग्स बोसॉन का भविष्य". Physics Today. 66 (12): 28–33. Bibcode:2013PhT....66l..28L. doi:10.1063/PT.3.2212. OSTI 1131296.
  24. Lykken, Joseph; Spiropulu, Maria (2013). "हिग्स बोसॉन का भविष्य". Physics Today. 66 (12): 28–33. Bibcode:2013PhT....66l..28L. doi:10.1063/PT.3.2212. OSTI 1131296.
  25. Low, I.; Manohar, A.V. (February 2002). "अनायास टूटा हुआ स्पेसटाइम समरूपता और गोल्डस्टोन का प्रमेय". Phys. Rev. Lett. 88 (10): 101602–101605. arXiv:hep-th/0110285. Bibcode:2002PhRvL..88j1602L. doi:10.1103/PhysRevLett.88.101602. PMID 11909340. S2CID 15997403.
  26. Volkov, D.V.; Akulov, V (1973). "Is the neutrino a goldstone particle?". Physics Letters. B46 (1): 109–110. Bibcode:1973PhLB...46..109V. doi:10.1016/0370-2693(73)90490-5.
  27. Salam, A; et al. (1974). "गोल्डस्टोन फर्मियन पर". Physics Letters. B49 (5): 465–467. Bibcode:1974PhLB...49..465S. doi:10.1016/0370-2693(74)90637-6.