3-बहुआयामी

From Vigyanwiki
Revision as of 08:58, 29 April 2023 by Indicwiki (talk | contribs) (16 revisions imported from alpha:3-बहुआयामी)
3-स्थूलक । छवि में सभी क्यूब्स एक ही क्यूब हैं, चूंकि बहुआयामी में प्रकाश बंद लूप में चारों ओर लपेटता है, इसका प्रभाव यह है कि क्यूब पूरे रिक्त स्थान को टाइल कर रहा है। इस रिक्त स्थान का परिमित आयतन है और कोई सीमा नहीं है।

गणित में, 3-बहुआयामी एक स्थलीय रिक्त स्थान है जो स्थानीय रूप से त्रि-आयामी यूक्लिडियन रिक्त स्थान जैसा दिखता है। ब्रह्मांड के संभावित आकार के रूप में 3-बहुआयामी के बारे में सोचा जा सकता है। जिस तरह एक गोलक एक छोटे पर्याप्त पर्यवेक्षक को एक समतल (ज्यामिति) की तरह दिखता है, उसी तरह सभी 3-बहुआयामी ऐसे दिखते हैं जैसे हमारा ब्रह्मांड एक छोटे से पर्याप्त पर्यवेक्षक को करता है। इसे नीचे दी गई परिभाषा में और अधिक परिशुद्ध बनाया गया है।

परिचय

परिभाषा

एक सांस्थितिक रिक्त स्थान एक 3-बहुआयामी है यदि यह दूसरी-गिनने योग्य हॉसडॉर्फ रिक्त स्थान है और यदि प्रत्येक बिंदु के अंदर है एक सामीप्य(गणित) है जो यूक्लिडियन 3-रिक्त स्थान के लिए होमियोमॉर्फिक है।

3-बहुआयामी का गणितीय सिद्धांत

सांस्थितिक, खंडशः रैखिक रैखिक, और सहज श्रेणियां सभी तीन आयामों में समान हैं, इसलिए इसमें बहुत कम अंतर किया जाता है कि क्या हम सांस्थितिक 3-बहुआयामी या सहज 3-बहुआयामी के साथ काम कर रहे हैं।

तीन आयामों में घटनाएं अन्य आयामों में घटनाओं से आश्चर्यजनक रूप से भिन्न हो सकती हैं, और इसलिए बहुत विशिष्ट तकनीकों का प्रचलन है जो तीन से अधिक आयामों को सामान्यीकृत नहीं करते हैं। इस विशेष भूमिका ने अन्य क्षेत्रों की विविधता के लिए घनिष्ठ संबंधों की खोज की है, जैसे गाँठ सिद्धांत, [ज्यामितीय समूह सिद्धांत], अतिपरवलीय ज्यामिति, संख्या सिद्धांत, टीचमुलर सिद्धांत | सांस्थितिक क्वांटम क्षेत्र सिद्धांत सिद्धांत, गेज सिद्धांत, फ्लोर सजातीयता , और आंशिक अंतर समीकरण। 3-बहुआयामी सिद्धांत को निम्न-आयामी संस्थितिविज्ञान या ज्यामितीय संस्थितिविज्ञान का एक हिस्सा माना जाता है।

सिद्धांत में एक महत्वपूर्ण विचार यह है कि इसमें सन्निहित विशेष सतह (संस्थितिविज्ञान) पर विचार करके 3-गुना का अध्ययन करना है। कोई सतह को 3-बहुआयामी में अच्छी तरह से रखने के लिए चुन सकता है, जो एक असंपीड्य सतह के विचार और हेकन बहुआयामी के सिद्धांत की ओर जाता है, या कोई भी पूरक टुकड़ों को जितना संभव हो उतना अच्छा चुन सकता है, जैसे कि संरचनाओं के लिए अग्रणी हीगार्ड विभाजन, जो गैर-हेकन सन्दर्भ में भी उपयोगी होते हैं।

विलियम थर्स्टन | सिद्धांत में थर्स्टन के योगदान ने कई मामलों में एक विशेष थर्स्टन मॉडल ज्यामिति (जिनमें से आठ हैं) द्वारा दी गई अतिरिक्त संरचना पर भी विचार करने की अनुमति दी है। सबसे प्रचलित ज्यामिति अतिपरवलीय ज्यामिति है। विशेष सतहों के अतिरिक्त ज्यामिति का उपयोग करना प्रायः फलदायी होता है।

3-बहुआयामी के अत्यन्त महत्वपूर्ण समूह 3-बहुआयामी से संबंधित ज्यामितीय और सांस्थितिक जानकारी को मजबूती से दर्शाते हैं। इस प्रकार, समूह सिद्धांत और सामयिक तरीकों के बीच एक परस्पर क्रिया होती है।

3-बहुआयामी कम-आयामी संस्थितिविज्ञान का एक दिलचस्प विशेष सन्दर्भ है क्योंकि उनके सांस्थितिक अचर सामान्य रूप से उनकी संरचना के बारे में बहुत सारी जानकारी देते हैं। 3-बहुआयामी सिद्धांत को निम्न-आयामी संस्थितिविज्ञान या ज्यामितीय संस्थितिविज्ञान का एक हिस्सा माना जाता है। अगर हम मान ले एक 3-बहुआयामी हो और इसका अत्यन्त महत्वपूर्ण समूह हो, तो उनसे बहुत सी जानकारी प्राप्त की जा सकती है। उदाहरण के लिए, पोंकारे द्वैत और ह्युरेविक्ज़ प्रमेय का उपयोग करते हुए, हमारे पास निम्नलिखित सजातीयता समूह हैं:

<ब्लॉककोट>जहां अंतिम दो समूह समूह कोहोलॉजी और कोहोलॉजी के लिए समरूप हैं, क्रमश; वह है, <ब्लॉककोट>इस जानकारी से 3-बहुआयामी का एक बुनियादी होमोटोपी सिद्धांतिक वर्गीकरण[1] पाया जा सकता है। विशेष सतहों के अतिरिक्त ज्यामिति का उपयोग करना प्रायः फलदायी होता है। नोट पोस्टनिकोव टॉवर से एक विहित मानचित्र है

अगर हम अत्यन्त महत्वपूर्ण वर्ग के पुशफॉरवर्ड को लें में हमें एक तत्व मिलता है . यह समूह निकलता है साथ में समूह समरूपता वर्ग समस्थेयता प्रकार का पूर्ण बीजगणितीय विवरण देता है।

संबंधित योग

एक महत्वपूर्ण सांस्थितिक ऑपरेशन दो 3-बहुआयामी का संबंधित हुआ योग है . वास्तव में, संस्थितिविज्ञान में सामान्य प्रमेयों से, हम एक जुड़े योग अपघटन के साथ तीन गुना के लिए पाते हैं ऊपर के लिए अपरिवर्तनीय से गणना की जा सकती है . विशेष रूप से

इसके अतिरिक्त , एक 3-बहुआयामी जिसे दो 3-बहुआयामी के जुड़े योग के रूप में वर्णित नहीं किया जा सकता है, उसे अभाज्य कहा जाता है।

दूसरा समस्थेयता समूह

अभाज्य 3-बहुआयामी के जुड़े योग द्वारा दिए गए 3-बहुआयामी के सन्दर्भ में, यह पता चला है कि दूसरे अत्यन्त महत्वपूर्ण समूह का एक अच्छा विवरण है -मापांक।[2] प्रत्येक होने के विशेष सन्दर्भ के लिए अनंत है लेकिन चक्रीय नहीं है, अगर हम 2-क्षेत्र के आधार पर अंतःस्थापन लेते हैं कहाँ फिर दूसरे अत्यन्त महत्वपूर्ण समूह की प्रस्तुति है

इस समूह की सीधी गणना दे रहा है।

3-बहुआयामी के महत्वपूर्ण उदाहरण

यूक्लिडियन 3-रिक्त स्थान

यूक्लिडियन 3-रिक्त स्थान 3-बहुआयामी का सबसे महत्वपूर्ण उदाहरण है, क्योंकि अन्य सभी इसके संबंध में परिभाषित हैं। यह वास्तविक संख्याओं पर मानक 3-आयामी सदिश रिक्त स्थान है।

3-गोला

हाइपरस्फीयर के समानांतरों (लाल), मेरिडियन (परिधि, दृश्य क्षेत्र) (नीला) और हाइपरमेरिडियन (हरा) का त्रिविम प्रक्षेपण। क्योंकि यह प्रक्षेपण अनुरूप मानचित्र है, वक्र एक दूसरे को लंबवत रूप से (पीले बिंदुओं में) 4D के रूप में काटते हैं। सभी वक्र वृत्त हैं: <0,0,0,1> को प्रतिच्छेद करने वाले वक्रों की अनंत त्रिज्या (= सीधी रेखा) होती है।

एक 3-गोलक एक गोले का उच्च-आयाम एनालॉग है। इसमें 4-आयामी यूक्लिडियन रिक्त स्थान में एक निश्चित केंद्रीय बिंदु से समतुल्य बिंदुओं का समूह होता है। जिस तरह एक साधारण गोलक (या 2-गोला) एक द्वि-आयामी सतह (संस्थितिविज्ञान ) है जो तीन आयामों में एक गेंद (गणित) की सीमा बनाता है, एक 3-गोलक तीन आयामों वाली एक वस्तु है जो एक चार आयामों में गेंद की सीमा बनाती है। एक परिमित समूह द्वारा 3-गोले के भागफल लेकर स्वतंत्र रूप से कार्य करना एक मानचित्र के माध्यम से , इसलिए 3-बहुआयामी के कई उदाहरणों का निर्माण किया जा सकता है।


वास्तविक प्रक्षेपी 3-रिक्त स्थान

वास्तविक प्रक्षेपी 3-, या RP3, R4 में मूल 0 से गुजरने वाली रेखाओं का स्थलीय स्थान है। यह आयाम 3 का एक सघन, स्मूथ बहुआयामी है, और ग्रासमैनियन का एक विशेष सन्दर्भ जीआर (1, R 4) है।

RP3 SO(3) के लिए (भिन्नरूपी) है, इसलिए एक समूह संरचना को स्वीकार करता है; कवरिंग मानचित्र S3 → RP3 समूह लाई (3) → SO(3) का एक मानचित्र है, जहां लाई समूह है जो SO(3) का सार्वभौमिक आवरण है।

3-स्थूलक

3-आयामी स्थूलक 3 वृत्त का उत्पाद है। वह है:

3-स्थूलक, T3 को किसी भी समन्वय में अभिन्न बदलाव के तहत R3 के भागफल के रूप में वर्णित किया जा सकता है। अर्थात 3-स्थूलक R3 है पूर्णांक जाली (समूह) Z3 की समूह क्रिया (गणित) मॉड्यूलो(सदिश जोड़ के रूप में की जा रही कार्रवाई के साथ)। 3-बहुआयामी सिद्धांत को निम्न-आयामी संस्थितिविज्ञान या ज्यामितीय संस्थितिविज्ञान का एक हिस्सा माना जाता है। विशेष सतहों के अतिरिक्त ज्यामिति का उपयोग करना प्रायः फलदायी होता है। समान रूप से, 3-स्थूलक को 3-आयामी घन से विपरीत फलक को एक साथ जोड़कर प्राप्त किया जाता है।

इस अर्थ में एक 3-स्थूलक 3-आयामी संक्षिप्त रिक्त स्थान बहुआयामी का एक उदाहरण है। यह संक्षिप्त एबेलियन समूह लाइ समूह का भी एक उदाहरण है। यह इस तथ्य से अनुसरण करता है कि यूनिट सर्कल एक संक्षिप्त एबेलियन लाइ समूह है (जब गुणा के साथ यूनिट जटिल संख्या के साथ पहचाना जाता है)। स्थूलक पर समूह गुणन तब समन्वय-वार गुणन द्वारा परिभाषित किया जाता है।

अतिपरवलीय 3-रिक्त स्थान

ई में घन मधुकोश के घन।3</उप>

अतिपरवलीय रिक्त स्थान एक सजातीय रिक्त स्थान है जिसे रिमेंनियन बहुआयामी के एक निरंतर कार्य नकारात्मक वक्रता द्वारा चित्रित किया जा सकता है। यह अतिपरवलीय ज्यामिति का मॉडल है। यह यूक्लिडियन रिक्त रिक्त स्थान से शून्य वक्रता के साथ अलग है जो यूक्लिडियन ज्यामिति को परिभाषित करता है, और अण्डाकार ज्यामिति के मॉडल (जैसे 3-क्षेत्र) जिसमें एक निरंतर सकारात्मक वक्रता होती है। जब यूक्लिडियन रिक्त स्थान (उच्च आयाम के) में सन्निहित किया जाता है, तो अतिपरवलीय रिक्त स्थान का हर बिंदु एक पल्याण बिन्दु होता है। एक अन्य विशिष्ट संपत्ति रिमेंनियन वॉल्यूम फॉर्म है जो 3-बॉल द्वारा अतिपरवलीय 3-रिक्त स्थान में कवर किया गया है: यह बहुपद के बजाय गेंद के त्रिज्या के संबंध में घातीय वृद्धि को बढ़ाता है।

पोनकारे द्वादशफलकी रिक्त स्थान

हेनरी पोंकारे समरूपता क्षेत्र (जिसे पोंकारे द्वादशफलकी रिक्त स्थान के रूप में भी जाना जाता है) एक समरूपता क्षेत्र का एक विशेष उदाहरण है। एक गोलाकार 3-बहुआयामी होने के नाते, यह एक परिमित अत्यन्त महत्वपूर्ण समूह के साथ एकमात्र सजातीयता 3-क्षेत्र (3-गोले के अतिरिक्त ) है। इसके अत्यन्त महत्वपूर्ण समूह को बाइनरी विंशफलकी समूह के रूप में जाना जाता है और इसका क्रम 120 है।

2003 में, ब्रह्मांडीय सूक्ष्मतरंग पृष्ठभूमि में सबसे बड़े पैमाने (60 डिग्री से ऊपर) पर संरचना की कमी, जैसा कि विल्किंसन सूक्ष्मतरंग अनिसोट्रॉपी जांच अंतरिक्ष यान द्वारा एक वर्ष के लिए मनाया गया, पेरिस वेधशाला और सहयोगियों के जीन पियरे ल्यूमिनेट द्वारा सुझाव दिया गया कि ब्रह्मांड का आकार पोंकारे गोलक है।[3][4] 2008 में, खगोलविदों ने मॉडल के लिए आकाश पर सबसे अच्छा अभिविन्यास पाया और डब्ल्यूएमएपी अंतरिक्ष यान द्वारा तीन वर्षों की टिप्पणियों का उपयोग करते हुए मॉडल की कुछ भविष्यवाणियों की पुष्टि की।[5]

हालाँकि, अभी तक मॉडल की शुद्धता के लिए कोई मजबूत समर्थन नहीं है।

सीफर्ट-वेबर रिक्त स्थान

गणित में, सीफर्ट-वेबर रिक्त स्थान (हर्बर्ट सीफर्ट और कॉन्स्टेंटिन वेबर द्वारा प्रस्तुत) एक बंद कई गुना अतिपरवलीय 3-बहुआयामी है। इसे सीफ़र्ट-वेबर द्वादशफलकी रिक्त स्थान और अतिपरवलीय द्वादशफलकी रिक्त स्थान के रूप में भी जाना जाता है। यह बंद अतिपरवलीय 3-बहुआयामी के पहले अविष्कार किये गए उदाहरणों में से एक है।

इसका निर्माण एक द्वादशफलक के प्रत्येक फलक को इसके विपरीत इस तरह से चिपका कर किया जाता है जिससे एक बंद 3-बहुआयामी उत्पादन होता है। इस ग्लूइंग को लगातार करने के तीन तरीके हैं। विपरीत फलक एक मोड़ के 1/10 द्वारा गलत संरेखित होते हैं, इसलिए उन्हें मिलान करने के लिए उन्हें 1/10, 3/10 या 5/10 मोड़ से घुमाया जाना चाहिए; 3/10 का घूर्णन सीफर्ट-वेबर रिक्त स्थान देता है। 1/10 के घूर्णन से पोंकारे सजातीयता स्फेयर मिलता है, और 5/10 के घूर्णन से 3-आयामी वास्तविक प्रक्षेप्य रिक्त स्थान मिलता है।

3/10-टर्न ग्लूइंग पैटर्न के साथ, मूल डोडेकाहेड्रोन के किनारों को पांच के समूहों में एक दूसरे से चिपकाया जाता है। इस प्रकार, सीफर्ट-वेबर अंतरिक्ष में, प्रत्येक किनारा पांच पंचकोणीय फलक से घिरा हुआ है, और इन पंचकोणों के बीच का डायहेड्रल कोण 72 ° है। यह यूक्लिडियन अंतरिक्ष में एक नियमित द्वादशफलक के 117° द्वितल कोण से मेल नहीं खाता है, लेकिन अतिपरवलीय रिक्त स्थान में 60° और 117° के बीच किसी भी द्वितल कोण के साथ नियमित द्वादशफलक उपस्थित है, और द्वितल कोण 72° के साथ अतिपरवलयिक द्वादशफलक का उपयोग किया जा सकता है सीफर्ट-वेबर अंतरिक्ष एक अतिपरवलीय बहुआयामी के रूप में एक ज्यामितीय संरचना।

यह इस डायहेड्रल कोण के साथ द्वादशफलकी द्वारा अतिपरवलीय 3-अंतरिक्ष के एक नियमित पॉलीटॉप चौकोर क्रम-5 द्वादशफलकी मधुकोश मधुकोश का एक भागफल रिक्त स्थान (संस्थितिविज्ञान ) है।

गीसेकिंग बहुआयामी

गणित में, गिसेकिंग बहुआयामी परिमित आयतन का अतिपरवलीय 3-बहुआयामी है। यह उन्मुखता है। गैर-उन्मुख और गैर-संक्षिप्त अतिपरवलीय बहुआयामी के बीच सबसे छोटी मात्रा है, जिसकी मात्रा लगभग 1.01494161 है जिसे ह्यूगो गेसेकिंग (1912) द्वारा खोजा गया था।

गिसेकिंग बहुआयामी का निर्माण एक चतुर्पाश्वीय से कोने को हटाकर किया जा सकता है, फिर एफाइन-रैखिक मानचित्रों का उपयोग करके जोड़े में फलक को एक साथ जोड़कर बनाया जा सकता है। शीर्षों को 0, 1, 2, 3 पर लेबल करें। उस क्रम में फलक को 0,1,2 के साथ फलक पर 3,1,0 के साथ चिपकाएं। उस क्रम में फलक को 0,2,3 से फलक को 3,2,1 पर गोंद दें। गिसेकिंग बहुआयामी की अतिपरवलीय संरचना में, यह आदर्श टेट्राहेड्रॉन डेविड बी. ए. एपस्टीन और रॉबर्ट सी. पेननर का विहित बहुफलकीय अपघटन है।[6] इसके अतिरिक्त , फलक द्वारा बनाया गया कोण है . त्रिकोणासन में एक चतुष्फलक, दो फलक, एक किनारा और कोई शीर्ष नहीं है, इसलिए मूल चतुष्फलक के सभी किनारे आपस में चिपके हुए हैं।

3-गुणों के कुछ महत्वपूर्ण वर्ग

अतिपरवलीय लिंक पूरक

बोरोमियन बजता है एक अतिपरवलीय लिंक हैं।

एक अतिपरवलीय लिंक 3-गोले में गाँठ पूरक के साथ एक लिंक (गांठ सिद्धांत) है जिसमें निरंतर नकारात्मक वक्रता का एक पूर्ण रिमेंनियन मीट्रिक है, अर्थात एक अतिपरवलीय ज्यामिति है। एक अतिपरवलीय गाँठ एक जुड़े हुए रिक्त स्थान के साथ एक अतिपरवलीय कड़ी है।

निम्नलिखित उदाहरण विशेष रूप से प्रसिद्ध और अध्ययन किए गए हैं।

कक्षाएं परस्पर अनन्य नहीं हैं।

3-बहुआयामी पर कुछ महत्वपूर्ण संरचनाएं

संपर्क ज्यामिति

स्पर्श ज्यामिति, स्पर्शरेखा बंडल में अधिसमतल वितरण (अंतर ज्यामिति) द्वारा दिए गए सहज बहुआयामी पर एक ज्यामितीय संरचना का अध्ययन है और एक विभेदक रूप द्वारा निर्दिष्ट है।फ्रोबेनियस प्रमेय (डिफरेंशियल संस्थितिविज्ञान ) से, एक स्थिति को उस स्थिति के विपरीत के रूप में पहचानता है जो वितरण को बहुआयामी ('पूर्ण पूर्णांक') पर एक सह आयाम वन पत्तियों से सजाना द्वारा निर्धारित किया जाता है।

संपर्क ज्यामिति कई तरह से सह-आयामी ज्यामिति का एक विषम-आयामी समकक्ष है, जो समान-आयामी दुनिया से संबंधित है। संपर्क और संसुघटित ज्यामिति दोनों शास्त्रीय यांत्रिकी के गणितीय औपचारिकता से प्रेरित हैं, जहां कोई यांत्रिक प्रणाली के सम-आयामी चरण रिक्त स्थान या विषम-आयामी विस्तारित चरण रिक्त स्थान पर विचार कर सकता है जिसमें समय चर सम्मिलित है।

बहुआयामी हुक

एक हेकेन बहुआयामी एक संक्षिप्त रिक्त स्थान है, P²-irreducible 3-बहुआयामी जो पर्याप्त रूप से बड़ा है, जिसका अर्थ है कि इसमें ठीक से सन्निहित 2-पक्षीय | दो तरफा असंपीड्य सतह सम्मिलित है। कभी-कभी कोई केवल अभिविन्यसनीय हेकेन बहुआयामी पर विचार करता है, इस सन्दर्भ में हेकेन बहुआयामी एक सघन , अभिविन्यसनीय , अलघुकरणीय 3-बहुआयामी होता है जिसमें एक अभिविन्यसनीय, असम्पीडित सतह होती है।

हेकेन बहुआयामी द्वारा परिमित रूप से कवर किए गए 3-बहुआयामी को वस्तुतः हेकेन कहा जाता है। वस्तुतः हेकेन अनुमान का दावा है कि अनंत अत्यन्त महत्वपूर्ण समूह के साथ प्रत्येक सघन , अलघुकरणीय 3-बहुआयामी वास्तव में हेकेन है।

हेकेन बहुआयामी वोल्फगैंग हेकेन द्वारा पेश किए गए थे। हेकेन ने साबित किया कि हेकेन बहुआयामी में एक पदानुक्रम है, जहां उन्हें असम्पीडित सतहों के साथ 3-गेंदों में विभाजित किया जा सकता है। हेकेन ने यह भी दिखाया कि अगर 3-बहुआयामी में एक होता तो एक असम्पीडित सतह को खोजने की एक सीमित प्रक्रिया होती। जैको और ओरटेल ने यह निर्धारित करने के लिए एक एल्गोरिथम दिया कि क्या 3-बहुआयामी हैकन था।

महत्वपूर्ण स्तरीकरण

एक आवश्यक स्तरीकरण एक स्तरीकरण(संस्थितिविज्ञान ) है जहां हर पत्ती असम्पीडित होती है और अंत में असम्पीडित होती है, यदि स्तरीकरण के पूरक क्षेत्र अलघुकरणीय हैं, और यदि कोई गोलाकार पत्तियां नहीं हैं।

आवश्यक स्तरीकरण हेकेन बहुआयामी में पाई जाने वाली असम्पीडित सतहों को सामान्यीकृत करते हैं।

हीगार्ड विभाजन

एक हीगार्ड विभाजन एक संक्षिप्त उन्मुख 3-बहुआयामी का अपघटन है जो इसे दो एंड्राइड में विभाजित करने के परिणामस्वरूप होता है।

प्रत्येक बंद, उन्मुख तीन गुना प्राप्त किया जा सकता है; यह एडविन ई. मोइज़ के कारण तीन गुना की त्रिकोणीयता पर गहरे परिणामों से आता है। यह उच्च-आयामी बहुआयामी के साथ दृढ़ता से विरोधाभास करता है, जिसमें चिकनी या टुकड़े-टुकड़े रैखिक संरचनाओं को स्वीकार करने की आवश्यकता नहीं होती है। सहजता को मानते हुए हीगार्ड विभाजन का अस्तित्व भी मोर्स सिद्धांत से संभाल अपघटन के बारे में सँकरा के कार्य से अनुसरण करता है।

अधिकतम संख्यन

एक अधिकतम संख्यन संपत्ति के साथ 3-बहुआयामी का एक सह आयाम1 संख्यन है, जिसमें हर पत्ती को पार करने वाला एक एकल अनुप्रस्थ चक्र होता है। अनुप्रस्थ वृत्त से तात्पर्य एक बंद लूप से है जो हमेशा पत्ते के स्पर्शरेखा क्षेत्र के अनुप्रस्थ होता है। समतुल्य रूप से, डेनिस सुलिवन के परिणामस्वरूप, एक सह आयाम 1 संख्यन अधिकतम है यदि कोई रिमेंनियन मीट्रिक उपस्थित है जो प्रत्येक पत्ती को एक न्यूनतम सतह बनाता है।

विलियम थर्स्टन और डेविड गबाई के काम से तने हुए पत्तों को प्रमुखता से लाया गया।

मूलभूत परिणाम

ऐतिहासिक कलाकृतियों के परिणामस्वरूप कुछ परिणामों को अनुमान के रूप में नामित किया गया है।

हम विशुद्ध रूप से सामयिक से शुरू करते हैं:

मोइज़ प्रमेय

ज्यामितीय संस्थितिविज्ञान में, एडविन ई. मोइस द्वारा सिद्ध किए गए मोइज़ के प्रमेय में कहा गया है कि किसी भी सांस्थितिक 3-बहुआयामी में एक अनिवार्य रूप से अद्वितीय टुकड़ा-रेखीय संरचना और चिकनी संरचना होती है।

परिणाम के रूप में, प्रत्येक संक्षिप्त 3-बहुआयामी में एक हीगार्ड विभाजन होता है।

अभाज्य अपघटन प्रमेय

3-बहुआयामी के लिए प्रमुख अपघटन प्रमेय बताता है कि प्रत्येक संक्षिप्त रिक्त स्थान , अभिविन्यसनीय 3-बहुआयामी अभाज्य गुणक के एक अद्वितीय (होमियोमोर्फिज्म तक) संग्रह का संबंधित हुआ योग है। अभाज्य 3-मैनिफ़ोल्ड।

एक बहुआयामी 'प्राइम' है अगर इसे एक से अधिक बहुआयामी के जुड़े योग के रूप में प्रस्तुत नहीं किया जा सकता है, जिनमें से कोई भी समान आयाम का क्षेत्र नहीं है।

केनेसर-हकेन परिमितता

केनेसर-हेकन परिमितता का कहना है कि प्रत्येक 3-बहुआयामी के लिए, एक स्थिर सी होता है जैसे कि सी से अधिक गणनांक की सतहों के किसी भी संग्रह में समानांतर तत्व होते हैं।

लूप और स्फीयर प्रमेय

लूप प्रमेय देह के लेम्मा का एक सामान्यीकरण है और इसे अधिक उचित रूप से डिस्क प्रमेय कहा जाना चाहिए। यह पहली बार 1956 में देह के लेम्मा और स्फीयर प्रमेय (3-कई गुना) के साथ क्रिस्टोस पापाकिरियाकोपोलोस द्वारा सिद्ध किया गया था।

लूप प्रमेय का एक सरल और उपयोगी संस्करण बताता है कि यदि कोई मानचित्र है

साथ में अशक्त नहीं , तो उसी संपत्ति के साथ एक अंतःस्थापन होती है।

का गोलक प्रमेय Papakyriakopoulos (1957) सन्निहित क्षेत्रों द्वारा प्रतिनिधित्व किए जाने वाले 3-बहुआयामी के दूसरे होमोटोपी समूह के तत्वों के लिए शर्तें देता है।

एक उदाहरण निम्न है:

होने देना एक उन्मुख 3-बहुआयामी ऐसा हो तुच्छ समूह नहीं है। तब का एक अशून्य तत्व उपस्थित होता है।

एक प्रतिनिधि है जो एक .अंतःस्थापन है।

वलय और स्थूलक प्रमेय

एनलस प्रमेय में कहा गया है कि यदि तीन गुना की सीमा पर अलग-अलग सरल बंद वक्रों की एक जोड़ी स्वतंत्र रूप से होमोटोपिक है तो वे एक उचित रूप से सन्निहित एनलस को बाध्य करते हैं। इसे समान नाम के उच्च विमीय प्रमेय के साथ भ्रमित नहीं होना चाहिए।

स्थूलक प्रमेय इस प्रकार है: माना एम एक सघन , अलघुकरणीय 3-बहुआयामी गैर-रिक्त सीमा के साथ हो। यदि एम एक स्थूलक के एक आवश्यक मानचित्र को स्वीकार करता है, तो एम एक स्थूलक या एनुलस के आवश्यक अंतःस्थापन को स्वीकार करता है[7]


जेएसजे अपघटन

जेएसजे अपघटन, जिसे टोरस्र्स अपघटन के रूप में भी जाना जाता है, निम्नलिखित प्रमेय द्वारा दिया गया एक सामयिक निर्माण है:

अलघुकरणीय (गणित) अभिविन्यसनीय क्लोज्ड (यानी, संक्षिप्त और बिना सीमा के) 3-बहुआयामी में एक अनोखा (समस्थेयता तक) न्यूनतम संग्रह होता है, जो असम्पीडित रूप से अंतःस्थापन असम्पीडित सतह टॉरस का होता है, जैसे कि टोरी के साथ काटने से प्राप्त 3-बहुआयामी का प्रत्येक घटक है या तो एटोरोइडल या सीफर्ट-फाइबर है

संक्षिप्त नाम जेएसजे विलियम जैको, पीटर शालेन और क्लॉस जोहानसन के लिए है। पहले दो एक साथ काम करते थे, और तीसरा स्वतंत्र रूप से काम करता था।[8][9]


स्कॉट कोर प्रमेय

स्कॉट कोर प्रमेय जी पीटर स्कॉट के कारण 3-बहुआयामी के अत्यन्त महत्वपूर्ण समूहों की परिमित प्रस्तुति के बारे में एक प्रमेय है।[10] सटीक कथन इस प्रकार है:

बारीक रूप से उत्पन्न समूह अत्यन्त महत्वपूर्ण समूह के साथ 3-बहुआयामी (आवश्यक रूप से संक्षिप्त बहुआयामी नहीं) दिया गया है, संक्षिप्त त्रि-आयामी सबमेनिफोल्ड है, जिसे संक्षिप्त कोर या स्कॉट कोर कहा जाता है, जैसे कि इसका समावेशन मानचित्र अत्यन्त महत्वपूर्ण समूहों पर एक समरूपता को प्रेरित करता है। विशेष रूप से, इसका मतलब है कि एक सूक्ष्म रूप से उत्पन्न 3-बहुआयामी समूह एक समूह की प्रस्तुति है।

एक सरलीकृत प्रमाण दिया गया है,[11] और एक मजबूत अद्वितीयता कथन में सिद्ध होता है।[12]


लिकोरिश-वालेस प्रमेय

लिकोरिश-वालेस प्रमेय में कहा गया है कि किसी भी बंद बहुआयामी, अभिविन्यसनीय , कनेक्टेड 3-बहुआयामी को 3-क्षेत्र में एक फ़्रेमयुक्त लिंक पर डीएचएन सर्जरी करके प्राप्त किया जा सकता है सर्जरी गुणांक। इसके अतिरिक्त , लिंक के प्रत्येक घटक को अज्ञात माना जा सकता है।

स्थलाकृतिक कठोरता पर वाल्डहॉसन के प्रमेय

सांस्थितिक कठोरता पर फ्रीडेलम वाल्डहॉसन के प्रमेयों का कहना है कि सीमा का सम्मान करने वाले अत्यन्त महत्वपूर्ण समूहों का एक समरूपता होने पर कुछ 3-बहुआयामी (जैसे कि एक असम्पीडित सतह वाले) होमियोमॉर्फिक हैं।

हीगार्ड विभाजन पर वाल्डहॉसन अनुमान

वाल्डहौसेन ने अनुमान लगाया कि प्रत्येक बंद अभिविन्यसनीय 3-बहुआयामी में किसी भी जीनस के केवल बहुत से हीगार्ड विभाजन (होमोमोर्फिज्म तक) हैं।

स्मिथ अनुमान

स्मिथ अनुमान (अब सिद्ध) में कहा गया है कि यदि f ऑर्डर के 3-क्षेत्र (समूह सिद्धांत) का एक भिन्नता है, तो f का निश्चित बिंदु सेट एक गैर-तुच्छ गाँठ (गणित) नहीं हो सकता है।

चक्रीय सर्जरी प्रमेय

चक्रीय सर्जरी प्रमेय में कहा गया है कि, एक संक्षिप्त रिक्त स्थान , कनेक्टेड रिक्त स्थान , अभिविन्यसनीय , इरेड्यूसबिलिटी (गणित) के लिए तीन गुना एम जिसकी सीमा एक स्थूलक टी है, अगर एम सीफर्ट नहीं है सीफर्ट-फाइबर वाली जगह और आर, एस टी पर ढलान हैं जैसे कि उनकी देह्न सर्जरी में चक्रीय अत्यन्त महत्वपूर्ण समूह है, फिर आर और एस के बीच की दूरी (न्यूनतम समय) कि आर और एस का प्रतिनिधित्व करने वाले टी में दो सरल बंद वक्र अधिकतम 1 हैं। नतीजतन, चक्रीय अत्यन्त महत्वपूर्ण समूह के साथ एम के अधिकतम तीन देह भराव हैं।

थर्स्टन की अतिपरवलीय डेन सर्जरी प्रमेय और जोर्जेंसन-थर्स्टन प्रमेय

थर्स्टन की अतिपरवलीय डेन सर्जरी प्रमेय कहती है: असाधारण ढलानों के एक सीमित सेट के रूप में अतिपरवलीय है प्रत्येक i के लिए i-th पुच्छल से बचा जाता है। इसके साथ ही, सभी के रूप में M में H में परिवर्तित हो जाता है सभी के लिए गैर-खाली देह भरने के अनुरूप .

यह प्रमेय विलियम थर्स्टन के कारण है और अतिपरवलीय 3-बहुआयामी के सिद्धांत के लिए अत्यन्त महत्वपूर्ण है। यह दर्शाता है कि ज्यामितीय संस्थितिविज्ञान के एच। ट्रॉल्स जोर्गेनसन के अध्ययन में गैर-तुच्छ सीमाएं उपस्थित हैं, आगे यह दर्शाता है कि सभी गैर-तुच्छ सीमाएं प्रमेय के रूप में देह भरने से उत्पन्न होती हैं।

थर्स्टन का एक और महत्वपूर्ण परिणाम यह है कि अतिपरवलीय डीहन भरने के तहत मात्रा घट जाती है। वास्तव में, प्रमेय में कहा गया है कि सांस्थितिक डीएचएन फिलिंग के तहत वॉल्यूम घटता है, यह मानते हुए कि डेहान से भरा बहुआयामी अतिपरवलीय है। सबूत ग्रोमोव मानदंड के बुनियादी गुणों पर निर्भर करता है।

जोर्जेंसन ने यह भी दिखाया कि इस रिक्त स्थान पर आयतन कार्य एक सतत कार्य है, उचित मानचित्र कार्य। इस प्रकार पिछले परिणामों के अनुसार, एच में गैर-तुच्छ सीमाएं वॉल्यूम के सेट में गैर-तुच्छ सीमाओं के लिए ली जाती हैं। वास्तव में, कोई और निष्कर्ष निकाल सकता है, जैसा कि थर्स्टन ने किया था, कि परिमित आयतन अतिपरवलीय 3-बहुआयामी के संस्करणों के सेट में क्रमिक संख्या होती है . इस परिणाम को थर्स्टन-जोर्गेनसन प्रमेय के रूप में जाना जाता है। इस समुच्चय की विशेषता बताने वाला आगे का कार्य मिखाइल ग्रोमोव (गणितज्ञ) द्वारा किया गया था।

इसके अतिरिक्त , गबाई, मेयेरहॉफ और मिले ने दिखाया कि सप्ताह कई गुना में किसी भी बंद अभिविन्यसनीय अतिपरवलीय 3-बहुआयामी की सबसे छोटी मात्रा है।

हेकन बहुआयामी के लिए थर्स्टन का हाइपरबोलाइज़ेशन प्रमेय

थर्स्टन के ज्यामितिकरण प्रमेय का एक रूप कहता है:

यदि M एक संक्षिप्त अलघुकरणीय एटोरॉयडल हेकेन बहुआयामी है, जिसकी सीमा में शून्य यूलर विशेषता है, तो M के आंतरिक भाग में परिमित आयतन की पूर्ण अतिपरवलीय संरचना है।

मोस्टो कठोरता प्रमेय का तात्पर्य है कि यदि कम से कम 3 आयाम के बहुआयामी परिमित मात्रा की एक अतिपरवलीय संरचना है, तो यह अनिवार्य रूप से अद्वितीय है।

बहुआयामी एम को अलघुकरणीय और एटोरॉयडल होने की शर्तें आवश्यक हैं, क्योंकि अतिपरवलीय बहुआयामी में ये गुण होते हैं। हालाँकि यह शर्त कि बहुआयामी होकेन अनावश्यक रूप से मजबूत है। थर्स्टन के हाइपरबोलाइज़ेशन अनुमान में कहा गया है कि अनंत अत्यन्त महत्वपूर्ण समूह के साथ एक बंद अलघुकरणीय एटोरॉयडल 3-बहुआयामी अतिपरवलीय है, और यह थर्स्टन ज्यामितीय अनुमान के पेरेलमैन के प्रमाण से अनुसरण करता है।

टैमनेस अनुमान, जिसे मार्डन अनुमान या टेम एंड्स अनुमान भी कहा जाता है

टैमनेस प्रमेय में कहा गया है कि प्रत्येक पूर्ण अतिपरवलीय 3-बहुआयामी फ़ाइनली जनरेट किए गए अत्यन्त महत्वपूर्ण समूह के साथ स्थैतिक रूप से वश में है, दूसरे शब्दों में होमोमोर्फिज़्म एक संक्षिप्त रिक्त स्थान 3-बहुआयामी के इंटीरियर के लिए है।

टैमनेस प्रमेय का अनुमान मार्डन ने लगाया था। यह अगोल द्वारा और स्वतंत्र रूप से डैनी कैलगरी और डेविड गबाई द्वारा सिद्ध किया गया था। यह ज्यामितीय रूप से अनंत अतिपरवलयिक 3-बहुआयामी के अत्यन्त महत्वपूर्ण गुणों में से एक है, साथ में क्लेनियन समूहों के घनत्व प्रमेय और अंतिम लेमिनेशन प्रमेय के साथ। इसका तात्पर्य अहलफोर्स माप अनुमान से भी है।

समाप्त लेमिनेशन अनुमान

अंतिम लेमिनेशन प्रमेय, मूल रूप से विलियम थर्स्टन द्वारा अनुमान लगाया गया था और बाद में जेफरी ब्रॉक, रिचर्ड कैनरी और यायर मिन्स्की द्वारा सिद्ध किया गया था, जिसमें कहा गया है कि अतिपरवलीय 3-बहुआयामी अंतिम रूप से उत्पन्न समूह अत्यन्त महत्वपूर्ण समूहों के साथ उनके संस्थितिविज्ञान द्वारा निश्चित अंत अपरिवर्तनीय के साथ निर्धारित किया जाता है, जो हैं बहुआयामी की सीमा में कुछ सतहों पर जियोडेसिक स्तरीकरण (संस्थितिविज्ञान )।

पोंकारे अनुमान

3-गोलक एक विशेष रूप से महत्वपूर्ण 3-बहुआयामी है क्योंकि अब सिद्ध पोंकारे अनुमान है। मूल रूप से हेनरी पोंकारे द्वारा अनुमानित, प्रमेय एक ऐसे रिक्त स्थान से संबंधित है जो स्थानीय रूप से सामान्य त्रि-आयामी अंतरिक्ष की तरह दिखता है लेकिन संबंधित हुआ है, आकार में परिमित है, और किसी भी सीमा का अभाव है (एक बंद बहुआयामी 3-कई गुना)। पोंकारे अनुमान का दावा है कि यदि ऐसी जगह में अतिरिक्त संपत्ति है कि अंतरिक्ष में प्रत्येक पथ (संस्थितिविज्ञान ) को एक बिंदु पर लगातार कड़ा किया जा सकता है, तो यह अनिवार्य रूप से एक त्रि-आयामी क्षेत्र है। कुछ समय के लिए एक सामान्यीकृत पोंकारे अनुमान उच्च आयामों में जाना जाता है।

गणितज्ञों द्वारा लगभग एक सदी के प्रयास के बाद, त्वरित पेरेलमैन ने 2002 और 2003 में एआरएक्सआईवी पर उपलब्ध कराए गए तीन पत्रों में अनुमान का प्रमाण प्रस्तुत किया। समस्या पर हमला करने के लिए रिक्की प्रवाह का उपयोग करने के लिए रिचर्ड एस। हैमिल्टन के कार्यक्रम से सबूत का पालन किया गया। पेरेलमैन ने मानक रिक्की प्रवाह का एक संशोधन पेश किया, जिसे सर्जरी के साथ रिक्की प्रवाह कहा जाता है ताकि एक नियंत्रित तरीके से व्यवस्थित रूप से एकवचन क्षेत्रों को विकसित किया जा सके। गणितज्ञों की कई टीमों ने सत्यापित किया है कि पेरेलमैन का प्रमाण सही है।

थर्स्टन का ज्यामितीय अनुमान

थर्स्टन के ज्यामितीय अनुमान में कहा गया है कि कुछ त्रि-आयामी सांस्थितिक रिक्त रिक्त स्थान प्रत्येक में एक अद्वितीय ज्यामितीय संरचना होती है जो उनके साथ जुड़ी हो सकती है। यह द्वि-आयामी सतह (संस्थितिविज्ञान ) के लिए एकरूपता प्रमेय का एक एनालॉग है, जिसमें कहा गया है कि प्रत्येक सरलता से जुड़े रीमैन सतह को तीन ज्यामिति (यूक्लिडियन ज्यामिति, गोलाकार ज्यामिति, या अतिपरवलयिक ज्यामिति) में से एक दिया जा सकता है।

तीन आयामों में, एक एकल ज्यामिति को पूरेसांस्थितिक रिक्त स्थान में असाइन करना हमेशा संभव नहीं होता है। इसके बजाय, ज्यामितीय अनुमान बताता है कि प्रत्येक बंद 3-बहुआयामी को विहित तरीके से टुकड़ों में विघटित किया जा सकता है, जिनमें से प्रत्येक में आठ प्रकार की ज्यामितीय संरचना होती है। अनुमान विलियम द्वारा प्रस्तावित किया गया था Thurston (1982), और कई अन्य अनुमानों को दर्शाता है, जैसे कि पोंकारे अनुमान और थर्स्टन का दीर्घवृत्त अनुमान।

थर्स्टन के हाइपरबोलाइज़ेशन प्रमेय का तात्पर्य है कि हेकेन बहुआयामी ज्यामितीय अनुमान को संतुष्ट करते हैं। थर्स्टन ने 1980 के दशक में एक प्रमाण की घोषणा की और तब से कई पूर्ण प्रमाण छपे हैं।

ग्रिगोरी पेरेलमैन ने 2003 में सर्जरी सिद्धांत के साथ रिक्की प्रवाह का उपयोग करते हुए पूर्ण ज्यामितीय अनुमान का एक प्रमाण तैयार किया।

सबूत के विवरण के साथ अब कई अलग-अलग पांडुलिपियां (नीचे देखें) हैं। पोंकारे अनुमान और गोलाकार अंतरिक्ष रूप अनुमान ज्यामितीय अनुमान के परिणाम हैं, हालांकि पूर्व के छोटे प्रमाण हैं जो ज्यामितीय अनुमान का नेतृत्व नहीं करते हैं।

वस्तुतः रेशेदार अनुमान और वस्तुतः हकेन अनुमान

संयुक्त राज्य अमेरिका के गणितज्ञ विलियम थर्स्टन द्वारा तैयार किए गए वस्तुतः तंतुमय अनुमान में कहा गया है कि प्रत्येक बंद बहुआयामी , अलघुकरणीय कई गुना, एटोरॉयडल 3-बहुआयामी विथ इनफिनिटी फंडामेंटल समूह में एक परिमित अंतरिक्ष को कवर करना है जो सर्कल के ऊपर एक सतह बंडल है।

वस्तुतः हेकेन अनुमान कहता है कि प्रत्येक संक्षिप्त बहुआयामी , कुंडा बहुआयामी , अलघुकरणीय बहुआयामी थ्री-आयामी बहुआयामी विथ इनफिनिटी फंडामेंटल समूह 'वस्तुतः हेकेन' है। यही है, इसका एक परिमित आवरण है (एक परिमित-से-एक आच्छादित मानचित्र के साथ एक आच्छादन रिक्त स्थान ) जो कि हेकेन बहुआयामी है।

25 अगस्त 2009 को एआरएक्सआईवी पर एक पोस्टिंग में,[13] डैनियल वाइज (गणितज्ञ) ने निहित रूप से निहित किया (तत्कालीन अप्रकाशित लंबी पांडुलिपि का हवाला देते हुए) कि उन्होंने उस सन्दर्भ के लिए वस्तुतः रेशेदार अनुमान को सिद्ध किया था जहां 3-बहुआयामी बंद है, अतिपरवलीय और हेकेन। इसके बाद गणितीय विज्ञान में इलेक्ट्रॉनिक अनुसंधान घोषणाओं में एक सर्वेक्षण लेख आया।[14]

कई और प्रीप्रिंट[15] समझदार द्वारा पूर्वोक्त लंबी पांडुलिपि सहित, का पालन किया है।[16] मार्च 2012 में, पेरिस में इंस्टीट्यूट हेनरी पॉइनकेयर में एक सम्मेलन के दौरान, इयान अगोल ने घोषणा की कि वह बंद अतिपरवलीय 3-बहुआयामी के लिए आभासी रूप से हकन अनुमान को साबित कर सकता है।[17] कहन और मार्कोविक के परिणामों पर निर्मित प्रमाण[18][19] भूतल उपसमूह अनुमान के उनके प्रमाण में और असामान्य विशेष भागफल प्रमेय को सिद्ध करने में बुद्धिमान के परिणाम[16]और समूहों के संचयन के लिए बर्जरॉन और वाइज के परिणाम।[13]समझदार के परिणामों के साथ मिलकर, यह सभी बंद अतिपरवलीय 3-बहुआयामी के लिए वस्तुतः फाइबरयुक्त अनुमान का तात्पर्य है।

सरल पाश अनुमान

अगर बंद कनेक्टेड सतहों का एक मानचित्र है जैसे कि इंजेक्शन नहीं है, तो एक गैर-संविदात्मक सरल बंद उपस्थित है

वक्र ऐसा है कि समरूप रूप से तुच्छ है। यह अनुमान डेविड गबाई द्वारा सिद्ध किया गया था।

भूतल उपसमूह अनुमान

फ्रिडेलम वाल्डहौसेन के सतह उपसमूह अनुमान में कहा गया है कि अनंत अत्यन्त महत्वपूर्ण समूह के साथ हर बंद, इरेड्यूसबल 3-बहुआयामी का मूल समूह एक सतह उपसमूह है। सतही उपसमूह से हमारा तात्पर्य एक बंद सतह के अत्यन्त महत्वपूर्ण समूह से है न कि 2-गोले से। यह समस्या Robion Kirby की समस्या सूची में समस्या 3.75 के रूप में सूचीबद्ध है।[20]

ज्यामितीय अनुमान को मानते हुए, एकमात्र खुला सन्दर्भ बंद अतिपरवलीय 3-बहुआयामी का था। इस सन्दर्भ के प्रमाण की घोषणा 2009 की गर्मियों में जेरेमी क्हान और व्लादिमीर मार्कोविक द्वारा की गई थी और 4 अगस्त 2009 को यूटा विश्वविद्यालय द्वारा आयोजित एफआरजी (फोकस्ड रिसर्च ग्रुप) सम्मेलन में एक वार्ता में इसकी रूपरेखा दी गई थी। अक्टूबर 2009 में अर्क्सिव पर एक प्रीप्रिंट दिखाई दिया।[21] उनका पेपर 2012 में गणित के इतिहास में प्रकाशित हुआ था।[22] जून 2012 में, क्ले गणित संस्थान द्वारा ऑक्सफ़ोर्ड में एक समारोह में क्हान और मार्कोविक को क्ले रिसर्च अवार्ड्स दिए गए।[23]


महत्वपूर्ण अनुमान

केबलिंग अनुमान

केबलिंग अनुमान बताता है कि यदि 3-गोले में गाँठ पर देह्न सर्जरी से 3-बहुआयामी कम हो जाता है, तो वह गाँठ एक है -केबल किसी अन्य गाँठ पर, और ढलान का उपयोग करके सर्जरी की गई होगी .

लुबोट्ज़्की–सरनाक अनुमान

किसी परिमित आयतन अतिपरवलयिक n-कई गुना के मौलिक समूह में गुण τ नहीं है।

संदर्भ

  1. Swarup, G. Ananda (1974). "सीबी थॉमस के एक प्रमेय पर". Journal of the London Mathematical Society (in English). s2-8 (1): 13–21. doi:10.1112/jlms/s2-8.1.13. ISSN 1469-7750.
  2. Swarup, G. Ananda (1973-06-01). "On embedded spheres in 3-manifolds". Mathematische Annalen (in English). 203 (2): 89–102. doi:10.1007/BF01431437. ISSN 1432-1807. S2CID 120672504.
  3. "Is the universe a dodecahedron?", article at PhysicsWorld.
  4. Luminet, Jean-Pierre; Weeks, Jeffrey; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Phillipe (2003-10-09). "कॉस्मिक माइक्रोवेव बैकग्राउंड में कमजोर वाइड-एंगल तापमान सहसंबंधों के स्पष्टीकरण के रूप में डोडेकाहेड्रल स्पेस टोपोलॉजी". Nature. 425 (6958): 593–595. arXiv:astro-ph/0310253. Bibcode:2003Natur.425..593L. doi:10.1038/nature01944. PMID 14534579. S2CID 4380713.
  5. Roukema, Boudewijn; Zbigniew Buliński; Agnieszka Szaniewska; Nicolas E. Gaudin (2008). "WMAP CMB डेटा के साथ Poincare डोडेकाहेड्रल स्पेस टोपोलॉजी परिकल्पना का परीक्षण". Astronomy and Astrophysics. 482 (3): 747–753. arXiv:0801.0006. Bibcode:2008A&A...482..747L. doi:10.1051/0004-6361:20078777. S2CID 1616362.
  6. Epstein, David B.A.; Penner, Robert C. (1988). "नॉनकॉम्पैक्ट हाइपरबोलिक मैनिफोल्ड्स के यूक्लिडियन अपघटन". Journal of Differential Geometry. 27 (1): 67–80. doi:10.4310/jdg/1214441650. MR 0918457.
  7. Feustel, Charles D (1976). "टोरस प्रमेय और उसके अनुप्रयोगों पर". Transactions of the American Mathematical Society. 217: 1–43. doi:10.1090/s0002-9947-1976-0394666-3.
  8. Jaco, William; Shalen, Peter B. A new decomposition theorem for irreducible sufficiently-large 3-manifolds. Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, pp. 71–84, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978.
  9. Johannson, Klaus, Homotopy equivalences of 3-manifolds with boundaries. Lecture Notes in Mathematics, 761. Springer, Berlin, 1979. ISBN 3-540-09714-7
  10. Scott, G. Peter (1973), "Compact submanifolds of 3-manifolds", Journal of the London Mathematical Society, Second Series, 7 (2): 246–250, doi:10.1112/jlms/s2-7.2.246, MR 0326737
  11. Rubinstein, J. Hyam; Swarup, Gadde A. (1990), "On Scott's core theorem", Bulletin of the London Mathematical Society, 22 (5): 495–498, doi:10.1112/blms/22.5.495, MR 1082023
  12. Harris, Luke; Scott, G. Peter (1996), "The uniqueness of compact cores for 3-manifolds", Pacific Journal of Mathematics, 172 (1): 139–150, doi:10.2140/pjm.1996.172.139, MR 1379290
  13. 13.0 13.1 Bergeron, Nicolas; Wise, Daniel T. (2009). "घनीकरण के लिए एक सीमा मानदंड". arXiv:0908.3609 [math.GT].
  14. Wise, Daniel T. (2009-10-29), "Research announcement: The structure of groups with a quasiconvex hierarchy", Electronic Research Announcements in Mathematical Sciences, 16: 44–55, doi:10.3934/era.2009.16.44, MR 2558631
  15. Haglund and Wise, A combination theorem for special cube complexes,
    Hruska and Wise, Finiteness properties of cubulated groups,
    Hsu and Wise, Cubulating malnormal amalgams,
    http://comet.lehman.cuny.edu/behrstock/cbms/program.html
  16. 16.0 16.1 Daniel T. Wise, The structure of groups with a quasiconvex hierarchy, https://docs.google.com/file/d/0B45cNx80t5-2NTU0ZTdhMmItZTIxOS00ZGUyLWE0YzItNTEyYWFiMjczZmIz/edit?pli=1
  17. Agol, Ian; Groves, Daniel; Manning, Jason (2012). "वर्चुअल हेकेन अनुमान". arXiv:1204.2810 [math.GT].
  18. Kahn, Jeremy; Markovic, Vladimir (2009). "एक बंद अतिशयोक्तिपूर्ण तीन कई गुना में लगभग जियोडेसिक सतहों को विसर्जित करना". arXiv:0910.5501 [math.GT].
  19. Kahn, Jeremy; Markovic, Vladimir (2010). "Counting Essential Surfaces in a Closed Hyperbolic 3-Manifold". arXiv:1012.2828 [math.GT].
  20. Robion Kirby, Problems in low-dimensional topology
  21. Kahn, Jeremy; Markovic, Vladimir (2009). "एक बंद अतिशयोक्तिपूर्ण तीन कई गुना में लगभग जियोडेसिक सतहों को विसर्जित करना". arXiv:0910.5501 [math.GT].
  22. Kahn, Jeremy; Markovic, Vladimir (2012), "Immersing almost geodesic surfaces in a closed hyperbolic three manifold", Annals of Mathematics, 175 (3): 1127–1190, arXiv:0910.5501, doi:10.4007/annals.2012.175.3.4, S2CID 32593851
  23. "2012 Clay Research Conference". Archived from the original on June 4, 2012. Retrieved Apr 30, 2020.


अग्रिम पठन


बाहरी संबंध