स्यूडोमेट्रिक स्पेस
गणित में, स्यूडो मीट्रिक स्थान मीट्रिक स्पेस का सामान्यीकरण है जिसमें दो अलग-अलग बिंदुओं के बीच की दूरी शून्य हो सकती है। ड्यूरो कुरेपा द्वारा स्यूडोमेट्रिक रिक्त स्थान पेश किए गए थे[1][2] 1934 में। जिस तरह से हर नॉर्म्ड स्पेस मेट्रिक स्पेस है, वैसे ही हर अर्धवृत्ताकार स्थान स्यूडोमेट्रिक स्पेस है। इस सादृश्य के कारण शब्द अर्धमितीय स्थान (जिसका टोपोलॉजी में अलग अर्थ है) को कभी-कभी पर्याय के रूप में प्रयोग किया जाता है, विशेष रूप से कार्यात्मक विश्लेषण में।
जब स्यूडोमेट्रिक्स के परिवार का उपयोग करके टोपोलॉजी उत्पन्न होती है, तो अंतरिक्ष को गेज अंतरिक्ष कहा जाता है।
परिभाषा
स्यूडोमेट्रिक स्पेस सेट है गैर-नकारात्मक वास्तविक-मूल्यवान फ़ंक्शन के साथ को फ़ोन कियाpseudometric, जैसे कि हर के लिए
- समरूपता:
- उपयोगात्मकता/त्रिभुज असमानता:
मीट्रिक स्थान के विपरीत, स्यूडोमेट्रिक स्थान में बिंदुओं को अविवेकी पहचान की आवश्यकता नहीं है; यानी किसी के पास हो सकता है विशिष्ट मूल्यों के लिए
उदाहरण
कोई भी मीट्रिक स्पेस स्यूडोमेट्रिक स्पेस है। कार्यात्मक विश्लेषण में स्यूडोमेट्रिक्स स्वाभाविक रूप से उत्पन्न होते हैं। अंतरिक्ष पर विचार करें वास्तविक मूल्यवान कार्यों की साथ में विशेष बिंदु यह बिंदु तब दिए गए कार्यों के स्थान पर स्यूडोमेट्रिक को प्रेरित करता है
इसके विपरीत, सजातीय, अनुवाद-अपरिवर्तनीय स्यूडोमेट्रिक सेमिनोर्म को प्रेरित करता है।
हाइपरबोलिक जटिल कई गुना के सिद्धांत में स्यूडोमेट्रिक्स भी उत्पन्न होते हैं: कोबायाशी मीट्रिक देखें।
हर माप अंतरिक्ष परिभाषित करके पूर्ण स्यूडोमेट्रिक स्पेस के रूप में देखा जा सकता है
अगर समारोह है और डी2 X पर छद्ममितीय है2, तब X पर छद्ममितीय देता है1. अगर डी2 मीट्रिक है और f अंतःक्रियात्मक फलन है, तो d1 पैमाना है।
टोपोलॉजी
pseudometric topology खुली गेंदों द्वारा उत्पन्न टोपोलॉजी (संरचना) है
स्यूडोमेट्रिक्स और मेट्रिक्स के बीच का अंतर पूरी तरह से सामयिक है। यही है, स्यूडोमेट्रिक मीट्रिक है अगर और केवल अगर यह उत्पन्न होने वाली टोपोलॉजी T0 स्पेस है। टी0(अर्थात, अलग-अलग बिंदु स्थैतिक रूप से अलग-अलग होते हैं)।
मीट्रिक रिक्त स्थान के लिए कॉची अनुक्रम और समापन (मीट्रिक स्थान) की परिभाषाएँ अपरिवर्तित स्यूडोमेट्रिक रिक्त स्थान पर ले जाती हैं।[5]
मीट्रिक पहचान
स्यूडोमेट्रिक का लुप्त होना तुल्यता संबंध को प्रेरित करता है, जिसे मीट्रिक पहचान कहा जाता है, जो छद्ममितीय स्थान को पूर्ण मीट्रिक स्थान में परिवर्तित करता है। यह परिभाषित करके किया जाता है अगर . होने देना का भागफल स्थान (टोपोलॉजी) हो इस तुल्यता संबंध से और परिभाषित करें
इस निर्माण का उदाहरण है पूर्ण मीट्रिक स्पेस#पूर्णता इसके कॉची क्रमों द्वारा।
यह भी देखें
टिप्पणियाँ
- ↑ Kurepa, Đuro (1934). "Tableaux ramifiés d'ensembles, espaces pseudodistaciés". C. R. Acad. Sci. Paris. 198 (1934): 1563–1565.
- ↑ Collatz, Lothar (1966). कार्यात्मक विश्लेषण और संख्यात्मक गणित (in English). New York, San Francisco, London: Academic Press. p. 51.
- ↑ "Pseudometric topology". PlanetMath.
- ↑ Willard, p. 23
- ↑ Cain, George (Summer 2000). "Chapter 7: Complete pseudometric spaces" (PDF). Archived from the original on 7 October 2020. Retrieved 7 October 2020.
- ↑ Howes, Norman R. (1995). आधुनिक विश्लेषण और टोपोलॉजी. New York, NY: Springer. p. 27. ISBN 0-387-97986-7. Retrieved 10 September 2012.
Let be a pseudo-metric space and define an equivalence relation in by if . Let be the quotient space and the canonical projection that maps each point of onto the equivalence class that contains it. Define the metric in by for each pair . It is easily shown that is indeed a metric and defines the quotient topology on .
- ↑ Simon, Barry (2015). विश्लेषण में एक व्यापक पाठ्यक्रम. Providence, Rhode Island: American Mathematical Society. ISBN 978-1470410995.
संदर्भ
- Arkhangel'skii, A.V.; Pontryagin, L.S. (1990). General Topology I: Basic Concepts and Constructions Dimension Theory. Encyclopaedia of Mathematical Sciences. Springer. ISBN 3-540-18178-4.
- Steen, Lynn Arthur; Seebach, Arthur (1995) [1970]. Counterexamples in Topology (new ed.). Dover Publications. ISBN 0-486-68735-X.
- Willard, Stephen (2004) [1970], General Topology (Dover reprint of 1970 ed.), Addison-Wesley
- This article incorporates material from Pseudometric space on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
- "Example of pseudometric space". PlanetMath.