ऑर्थोगोनलाइज़ेशन
रैखिक बीजगणित में, ऑर्थोगोनलाइज़ेशन लांबिक सदिश का एक समुच्चय खोजने की प्रक्रिया है जो एक विशेष रैखिक उप-समष्टि (रैखिक बीजगणित) को फैलाता है। औपचारिक रूप से, एक आंतरगुणनसमष्टि (सामान्यतः यूक्लिडियन समष्टि Rn) में सदिश {v1, ... , vk} के रैखिक रूप से स्वतंत्र समुच्चय से प्रारंभ होकर, ऑर्थोगोनलाइज़ेशन के परिणामस्वरूप लांबिक सदिश {u1, ... , uk} का समुच्चय होता है जो सदिश v1, ... , vk के समान उप-समष्टि उत्पन्न करता है। नवीन समुच्चय में प्रत्येक सदिश नवीन समुच्चय में प्रत्येक दूसरे सदिश के लिए लांबिक है; और नवीन समुच्चय और प्राचीन समुच्चय का एक ही रैखिक विस्तार है।
इसके अतिरिक्त , यदि हम चाहते हैं कि परिणामी सदिश सभी इकाई सदिश हों, तो हम प्रत्येक सदिश सामान्य करते हैं और प्रक्रिया को ऑर्थोनॉर्मलाइजेशन कहा जाता है।
ऑर्थोगोनलाइजेशन किसी भी सममित द्विरेखीय रूप के संबंध में भी संभव है (आवश्यक नहीं कि एक आंतरिक उत्पाद, आवश्यक नहीं कि वास्तविक संख्या से अधिक हो), परन्तु इस अधिक सामान्य समुच्चयिंग में मानक एल्गोरिदम को शून्य से विभाजन का सामना करना पड़ सकता है।
ऑर्थोगोनलाइज़ेशन एल्गोरिदम
ऑर्थोगोनलाइज़ेशन करने के तरीकों में शामिल हैं:
- ग्राम-श्मिट प्रक्रिया, जो प्रोजेक्शन (रैखिक बीजगणित) का उपयोग करती है
- गृहस्थ परिवर्तन, जो परावर्तन (गणित) का उपयोग करता है
- रोटेशन देता है
- सममित ऑर्थोगोनलाइजेशन, जो एकवचन मूल्य अपघटन का उपयोग करता है
कंप्यूटर पर ऑर्थोगोनलाइज़ेशन करते समय, सामान्यतः ग्राम-श्मिट प्रक्रिया पर हाउसहोल्डर ट्रांसफ़ॉर्मेशन को प्राथमिकता दी जाती है क्योंकि यह अधिक संख्यात्मक स्थिरता है, अर्थात राउंडिंग त्रुटियों का कम गंभीर प्रभाव होता है।
दूसरी ओर, ग्राम-श्मिट प्रक्रिया jवें पुनरावृति के बाद jth ऑर्थोगोनलाइज़्ड सदिश का उत्पादन करती है, जबकि हाउसहोल्डर रिफ्लेक्शंस का उपयोग करके ऑर्थोगोनलाइज़ेशन केवल अंत में सभी सदिश उत्पन्न करता है। यह केवल ग्राम-श्मिट प्रक्रिया को पुनरावृत्त विधियों जैसे अर्नोल्डी पुनरावृत्ति के लिए लागू करता है।
घुमाव देता है हाउसहोल्डर ट्रांसफॉर्मेशन की तुलना में अधिक आसानी से समानांतर कंप्यूटिंग है।
प्रति-ओलोव लोडिन द्वारा सममित ऑर्थोगोनलाइज़ेशन तैयार किया गया था।[1]
स्थानीय ऑर्थोगोनलाइज़ेशन
पारंपरिक शोर क्षीणन दृष्टिकोणों में उपयोगी सिग्नल के नुकसान की भरपाई करने के लिए गलत पैरामीटर चयन या डीनोइजिंग धारणाओं की अपर्याप्तता के कारण, प्रारंभिक शोर अनुभाग से उपयोगी सिग्नल की पुनर्प्राप्ति के लिए आरंभिक खंड पर एक वेटिंग ऑपरेटर लगाया जा सकता है। नई denoising प्रक्रिया को सिग्नल और शोर के स्थानीय ऑर्थोगोनलाइजेशन के रूप में जाना जाता है।[2] इसमें कई सिग्नल प्रोसेसिंग और भूकंपीय अन्वेषण क्षेत्रों में अनुप्रयोगों की एक विस्तृत श्रृंखला है।
यह भी देखें
- ऑर्थोगोनलिटी
- बायोर्थोगोनल प्रणाली
- लांबिकआधार
संदर्भ
- ↑ Löwdin, Per-Olov (1970). "On the nonorthogonality problem". क्वांटम रसायन विज्ञान में अग्रिम. Vol. 5. Elsevier. pp. 185–199.
- ↑ Chen, Yangkang; Fomel, Sergey (2015). "स्थानीय सिग्नल और शोर ऑर्थोगोनलाइजेशन का उपयोग करके यादृच्छिक शोर क्षीणन". Geophysics. 80 (6): WD1–WD9. doi:10.1190/GEO2014-0227.1.