बीजगणितीय क्वांटम क्षेत्र सिद्धांत

From Vigyanwiki
Revision as of 11:14, 27 April 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

बीजगणितीय क्वांटम क्षेत्र सिद्धांत (एक्यूएफटी) C*-बीजगणित सिद्धांत के स्थानीय क्वांटम भौतिकी के लिए एक अनुप्रयोग है। इसे क्वांटम क्षेत्र सिद्धांत के लिए हाग-कास्टलर अभिगृहीत रूपरेखा के रूप में भी जाना जाता है, क्योंकि इसे रुडोल्फ हाग और डैनियल कास्टलर (1964) द्वारा प्रस्तुत किया गया था। स्वयंसिद्धों को मिन्कोव्स्की समष्टि में प्रत्येक विवृत समुच्चय के लिए दिए गए बीजगणित और उनके बीच मानचित्रण के संदर्भ में कहा गया है।

हाग-कस्तलर अभिगृहीत

मान लीजिए मिन्कोव्स्की समष्टि के सभी विवृत और परिबद्ध उपसमुच्चयों का समुच्चय हो। बीजगणितीय क्वांटम क्षेत्र सिद्धांत को वॉन न्यूमैन बीजगणित के शुद्ध के माध्यम से परिभाषित किया गया है, और सामान्य हिल्बर्ट समष्टि पर निम्नलिखित सिद्धांतों को संतुष्ट करते हैं:[1]

  • आइसोटोनी: का तात्पर्य है।
  • कारणता: यदि समष्टि की तरह से अलग है तब होता है।
  • पॉइनकेयर सहप्रसरण: पोंकारे समूह का दृढ़ता से निरंतर एकात्मक प्रतिनिधित्व इस तरह सम्मिलित है कि , प्राप्त होता है।
  • स्पेक्ट्रम की स्थिति: ऊर्जा-संवेग संकारक (अर्थात दिक्काल स्थानांतरण का उत्पादक) संयुक्त स्पेक्ट्रम संवृत अग्रिम प्रकाश शंकु में समाहित है।
  • निर्वात सदिश का अस्तित्व: चक्रीय और पॉइनकेयर-अपरिवर्तनीय सदिश सम्मिलित है।

शुद्ध बीजगणित स्थानीय बीजगणित कहलाते हैं और C* बीजगणित अर्धस्थानीय बीजगणित कहलाता है।

श्रेणी-सैद्धांतिक सूत्रीकरण

बता दें कि मिंक मिन्कोव्स्की समष्टि M के विवृत उपसमुच्चय का श्रेणी सिद्धांत है, जिसमें आकारिकी के रूप में सम्मिलित किए गए मानचित्र हैं। हमें मिंक से तक एक सहसंयोजक फलन-निर्धारक uC*alg दिया गया है, एकात्मक C* बीजगणित की श्रेणी, जैसे कि मिंक मानचित्र में प्रत्येक आकारिता uC*alg (आइसोटोनी) में एकैक समाकारिता के लिए मानचित्रित करता है।

पोंकारे समूह मिंक पर निरंतर ( सांस्थिति) का कार्य करता है। इस समूह संक्रिया (गणित) में एक पुलबैक सम्मिलित है, जो (पॉइनकेयर सहप्रसरण) मानक सांस्थिति में निरंतर है।

मिन्कोव्स्की समष्टि में एक कारणिक संरचना है। यदि एक विवृत समुच्चय V एक विवृत समुच्चय U के कारणिक पूरक में निहित है, तो मानचित्रों की छवि (गणित)

और

रूपांतरित (आकाशवत् क्रम-विनिमेयता) यदि विवृत समुच्चय U का कारणिक पूर्ण है, तब एक समरूपता (मूल कारणता ) है।

C*-बीजगणित के संबंध में एक अवस्था (कार्यात्मक विश्लेषण) इकाई मानक (गणित) के साथ एक धनात्मक रैखिक कार्यात्मक है। यदि हमारे पास पर एक स्थिति है, तो हम परिशुद्ध (गणित) एकैक समाकारिता के माध्यम से प्रत्येक विवृत समुच्चय के लिए से जुड़े अवस्थाओ को प्राप्त करने के लिए "आंशिक अनुरेख" ले सकते हैं। विवृत समुच्चय पर स्थिति एक प्रीशेफ संरचना बनाते हैं।

जीएनएस निर्माण के अनुसार, प्रत्येक स्थिति के लिए, हम के एक हिल्बर्ट समष्टि प्रतिनिधित्व को जोड़ सकते हैं। शुद्ध स्थिति अखंडनीय निरूपण के अनुरूप हैं और मिश्रित अवस्थाएँ (भौतिकी) अपक्षयीय निरूपण के अनुरूप होती हैं। प्रत्येक अलघुकरणीय प्रतिनिधित्व (समानता संबंध तक) को एक अतिचयनात्मक क्षेत्र कहा जाता है। हम मानते हैं कि एक शुद्ध स्थिति है जिसे निर्वात कहा जाता है जैसे कि इससे जुड़ा हिल्बर्ट समष्टि पॉइंकेयर समूह का एक एकात्मक प्रतिनिधित्व है जो परिशुद्ध पॉइंकेयर सहप्रसरण के साथ संगत है जैसे कि यदि हम पोनकारे बीजगणित को देखें, ऊर्जा के संबंध में वर्णक्रमीय -संवेग (दिक्काल स्थानांतरण के अनुरूप) धनात्मक प्रकाश शंकु पर और में स्थित है। यह निर्वात खंड है।

वक्रित दिक्काल में क्वांटम क्षेत्र सिद्धांत

हाल ही में, वक्रित दिक्काल में क्वांटम फील्ड सिद्धांत के बीजगणितीय संस्करण को सम्मिलित करने के लिए दृष्टिकोण को अधिक प्रयुक्त किया गया है। वास्तव में, स्थानीय क्वांटम भौतिकी का दृष्टिकोण वक्रित पृष्ठभूमि पर विकसित क्वांटम क्षेत्रों के सिद्धांत के लिए सामान्यीकरण प्रक्रिया को सामान्य बनाने के लिए विशेष रूप से उपयुक्त है। ब्लैक होल (अंध विवर) की उपस्थिति में क्वांटम क्षेत्र सिद्धांत से संबंधित कई कठिन परिणाम प्राप्त हुए हैं।[citation needed]

संदर्भ

  1. Baumgärtel, Hellmut (1995). क्वांटम फील्ड थ्योरी में संचालिका बीजगणितीय तरीके. Berlin: Akademie Verlag. ISBN 3-05-501655-6.


अग्रिम पठन


बाहरी संबंध