अनाकार धातु

From Vigyanwiki
Revision as of 09:52, 4 May 2023 by Indicwiki (talk | contribs) (14 revisions imported from alpha:अनाकार_धातु)
रवाहीन धातु के नमूने, मिलीमीटर पैमाने के साथ

एक रवाहीन धातु (धात्विक कांच, कांच की धातु या चमकदार धातु के रूप में भी जाना जाता है) एक ठोस धातु सामग्री है, सामान्यत: एक मिश्र धातु, अव्यवस्थित परमाणु-पैमाने की संरचना के साथ। अधिकांश धातुएँ अपनी ठोस अवस्था में मणिभीय होती हैं, जिसका अर्थ है कि उनके पास परमाणुओं की एक उच्च क्रम वाली व्यवस्था है। रवाहीन धातु गैर-मणिभीय होते हैं, और तरल और कांच की संरचना होती है | कांच जैसी संरचना। लेकिन साधारण कांच के विपरीत, जैसे कि खिड़की के शीशे, जो सामान्यत: विद्युत रोधी होते हैं, रवाहीन धातुओं में अच्छी विद्युत चालकता होती है और धातु की चमक दिखा सकते हैं।

ऐसे कई तरीके हैं जिनसे रवाहीन धातुओं का उत्पादन किया जा सकता है, जिनमें अत्यधिक तेजी से ठंडा करना, भौतिक वाष्प जमाव, ठोस-अवस्था प्रतिक्रिया, आयन विकिरण और यांत्रिक मिश्रधातु सम्मलित हैं।[1][2] पहले, रवाहीन धातुओं के छोटे वर्ग विभिन्न प्रकार के त्वरित-ठंडा करने के तरीकों के माध्यम से तैयार किए गए थे, जैसे कि रवाहीन धातु रिबन, जो पिघली हुई धातु को कताई धातु डिस्क (पिघल कताई) पर कणरंजन द्वारा उत्पादित किया गया था। तेजी से ठंडा होना (लाखों डिग्री सेल्सियस प्रति सेकंड के क्रम में) क्रिस्टल बनने के लिए बहुत तेज है और सामग्री कांच जैसी अवस्था में "बंद" है।[3] वर्तमान में, महत्वपूर्ण शीतलन दरों के साथ कई मिश्र धातुएं मोटी परतों में रवाहीन संरचना के गठन की अनुमति देने के लिए पर्याप्त कम हैं (ऊपर 1 millimetre or 0.039 inches) का उत्पादन किया गया है; इन्हें थोक धातु ग्लास के रूप में जाना जाता है। हाल ही में, पारंपरिक स्टील मिश्र धातुओं की तुलना में तीन गुना ताकत वाले रवाहीन स्टील के बैचों का उत्पादन किया गया है।

इतिहास

1960 में डब्ल्यू क्लेमेंट (जूनियर), विलेंस और डुवेज़ द्वारा कैल्टेक में निर्मित पहली धातु का कांच एक मिश्र धातु (Au75Si25) था।[4] क्रिस्टलीकरण से बचने के लिए इस और अन्य आरंभिक ग्लास बनाने वाली मिश्र धातुओं को बहुत तेजी से ठंडा किया जाना था (एक मेगाकेल्विन प्रति सेकंड, 106 K/s के क्रम में)। इसका एक महत्वपूर्ण परिणाम यह था कि धातु के गिलास केवल सीमित रूपों (सामान्यत: रिबन, पन्नी, या तार) में उत्पादित किए जा सकते थे, जिसमें एक आयाम छोटा था जिससे कि आवश्यक शीतलन दर प्राप्त करने के लिए गर्मी को जल्दी से निकाला जा सके। परिणाम स्वरूप, धातु कांच के नमूने (कुछ अपवादों के साथ) एक सौ माइक्रोमीटर से कम की मोटाई तक सीमित थे।

1969 में, 77.5% पैलेडियम, 6% कॉपर, और 16.5% सिलिकॉन के मिश्र धातु में 100 और 1000 K/s के बीच महत्वपूर्ण शीतलन दर पाई गई।

1976 में, एच. लिबरमैन और सी. ग्राहम ने पिघली हुई स्पिनिंग अतिशीतलित फास्ट-स्पिनिंग व्हील पर रवाहीन धातु के पतले रिबन बनाने की एक नई विधि विकसित की।[5] यह लोहा, निकल और बोरॉन की मिश्रधातु थी। सामग्री, जिसे मेटग्लास के रूप में जाना जाता है, का 1980 के दशक की आरंभिक में व्यावसायीकरण किया गया था और इसका उपयोग कम-नुकसान वाले बिजली वितरण ट्रांसफार्मर (रवाहीन धातु ट्रांसफार्मर) के लिए किया जाता है। मेटग्लास-2605 80% आयरन और 20% बोरॉन से बना है, इसका क्यूरी तापमान है 646 K (703 °F) और 1.56 टेस्ला (यूनिट) का एक कमरे का तापमान संतृप्ति चुंबकीयकरण।[6] 1980 के दशक की आरंभिक में, ग्लासी सिल्लियां व्यास के साथ 5 mm (0.20 in) 55% पैलेडियम, 22.5% लेड, और 22.5% सुरमा के मिश्रधातु से सतह पर नक़्क़ाशी के बाद ताप-शीतलन चक्र द्वारा उत्पादित किए गए थे। बोरान ऑक्साइड फ्लक्स (धातु विज्ञान) का उपयोग करके, प्राप्य मोटाई को एक सेंटीमीटर तक बढ़ाया गया था।[clarification needed]

1982 में, रवाहीन धातु संरचनात्मक विश्राम पर एक अध्ययन ने (Fe0.5Ni0.5)83P17 की विशिष्ट गर्मी और तापमान के बीच संबंध का संकेत दिया।. जैसा कि सामग्री गर्म हो गई थी, गुणों ने 375 K से आरंभ होने वाले एक नकारात्मक संबंध को विकसित किया, जो आराम से रवाहीन अवस्थाओं में परिवर्तन के कारण था। जब सामग्री को 1 से 48 घंटों की अवधि के लिए अनीलित किया गया था, तो गुणों ने सभी अनीलन अवधियों के लिए 475 K से आरंभ होने वाला सकारात्मक संबंध विकसित किया था, क्योंकि अनीलन प्रेरित संरचना उस तापमान पर गायब हो जाती है।[7] इस अध्ययन में, रवाहीन मिश्र धातुओं ने कांच के परिवर्तन और एक सुपर कूल्ड तरल क्षेत्र का प्रदर्शन किया। 1988 और 1992 के बीच, अधिक अध्ययनों में ग्लास परिवर्तन और एक सुपर कूल्ड तरल क्षेत्र के साथ अधिक ग्लास-प्रकार के मिश्र धातु पाए गए। उन अध्ययनों से, बल्क ग्लास मिश्रधातु La, Mg, और Zr से बने थे, और इन मिश्र धातुओं ने तब भी सुघटयता का प्रदर्शन किया जब उनकी रिबन की मोटाई 20 μm से बढ़ाकर 50 μm कर दी गई थी। सुघटयता पिछले रवाहीन धातुओं के लिए एक बड़ा अंतर था जो उन मोटाई पर भंगुर हो गए थे।[7][8][9][10] 1988 में, लैन्थेनम, एल्यूमीनियम, और तांबे के अयस्क की मिश्रधातु अत्यधिक कांच बनाने वाली पाई गई। स्कैंडियम युक्त अल-आधारित धातु के कांच ने रिकॉर्ड-प्रकार की तन्यता यांत्रिक शक्ति का प्रदर्शन किया 1,500 MPa (220 ksi).[11] 1990 में नई तकनीकों की खोज से पहले, मोटाई में कई मिलीमीटर के बल्क रवाहीन मिश्र दुर्लभ थे, कुछ अपवादों को छोड़कर, पीडी-आधारित रवाहीन मिश्र धातुओं को शमन द्वारा 2 मिमी (0.079 इंच) व्यास के साथ छड़ में बनाया गया था, [12] और 10 मिमी (0.39 इंच) व्यास वाले गोले B2O3 और शमन के साथ पुनरावृत्ति प्रवाह द्वारा बनाए गए थे। [13]1990 के दशक में नए मिश्र धातु विकसित किए गए थे जो एक केल्विन प्रति सेकंड जितनी कम शीतलन दर पर ग्लास बनाते हैं। इन शीतलन दरों को धातु के सांचों में साधारण ढलाई द्वारा प्राप्त किया जा सकता है। इन थोक रवाहीन मिश्र धातुओं को रवाहीन संरचना को बनाए रखते हुए मोटाई (मिश्र धातु के आधार पर अधिकतम मोटाई) में कई सेंटीमीटर तक के हिस्सों में डाला जा सकता है। सबसे अच्छा ग्लास बनाने वाली मिश्र धातु जर्कोनियम और पैलेडियम पर आधारित होती है, लेकिन लोहा, टाइटेनियम, तांबा, मैगनीशियम और अन्य धातुओं पर आधारित मिश्र धातु भी जानी जाती है। "भ्रम" प्रभाव नामक घटना का शोषण करके कई रवाहीन मिश्र धातुएं बनाई जाती हैं। इस तरह के मिश्र धातुओं में इतने सारे अलग-अलग तत्व होते हैं (अधिकांशत: चार या अधिक) कि पर्याप्त तेजी से ठंडा होने पर, घटक परमाणु अपनी गतिशीलता को रोकने से पहले खुद को संतुलन क्रिस्टलीय अवस्था में समन्वयित नहीं कर सकते। इस तरह, परमाणुओं की यादृच्छिक अव्यवस्थित स्थिति "लॉक इन" होती है।

1992 में, वाणिज्यिक रवाहीन मिश्र धातु, विट्रेलॉय 1 (41.2% Zr, 13.8% Ti, 12.5% Cu, 10% Ni, और 22.5% Be), एयरोस्पेस सामग्री कैलटेक में विकसित किया गया था, ऊर्जा विभाग और नासा के नए शोध के एक भाग के रूप में।[12] 2000 तक तोहोकू विश्वविद्यालय में शोध[13] और कैलटेक ने ऑक्साइड ग्लास के बराबर 1 K/s से 100 K/s के बीच महत्वपूर्ण शीतलन दर के साथ लैंथेनम, मैग्नीशियम, जिरकोनियम, पैलेडियम, लोहा, तांबा और टाइटेनियम पर आधारित बहुघटक मिश्रधातु का उत्पादन किया।[clarification needed]

2004 में, बल्क रवाहीन स्टील का सफलतापूर्वक दो समूहों द्वारा उत्पादन किया गया था: पहलाओक रिज राष्ट्रीय प्रयोगशाला में, जो अपने उत्पाद को ग्लासी स्टील के रूप में संदर्भित करता है, और दूसरा वर्जीनिया विश्वविद्यालय में, "DARVA-Glass 101" को।[14][15] उत्पाद कमरे के तापमान पर गैर-चुंबकीय है और पारंपरिक स्टील की तुलना में काफी मजबूत है, चूंकि सामग्री को सार्वजनिक या सैन्य उपयोग में लाने से पहले एक लंबी शोध और विकास प्रक्रिया बनी हुई है।[16][17] 2018 में एसएलएसी राष्ट्रीय त्वरक प्रयोगशाला, राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) और नॉर्थवेस्टर्न यूनिवर्सिटी की एक टीम ने एक वर्ष में 20,000 विभिन्न संभावित धातु कांच मिश्र धातुओं के नमूनों की भविष्यवाणी और मूल्यांकन करने के लिए कृत्रिम बुद्धि के उपयोग की सूचना दी। उनके तरीके नए रवाहीन धातु मिश्र धातुओं के लिए अनुसंधान और समय को बाजार में लाने का वादा करते हैं।[18][19]


गुण

रवाहीन धातु सामान्यत: शुद्ध धातु के अतिरिक्त मिश्र धातु होती है। मिश्र धातुओं में महत्वपूर्ण रूप से भिन्न आकार के परमाणु होते हैं, जिसमे पिघली हुई अवस्था में कम मुक्त आयतन (और इसलिए अन्य धातुओं और मिश्र धातुओं की तुलना में परिमाण उच्च श्यानता के आदेश तक) होता है। श्यानता परमाणुओं को एक व्यवस्थित जाली बनाने के लिए पर्याप्त गति करने से रोकती है। भौतिक संरचना के परिणामस्वरूप शीतलन के दौरान कम संकोचन होता है, और प्लास्टिक विरूपण का प्रतिरोध होता है। कण परिसीमा की अनुपस्थिति, मणिभीय सामग्री के कमजोर धब्बे, घिसाव और क्षरण के लिए बेहतर प्रतिरोध की ओर ले जाते हैं[20] रवाहीन धातु, जबकि तकनीकी रूप से ग्लास, ऑक्साइड ग्लास और सिरेमिक की तुलना में बहुत कठिन और कम भंगुर होते हैं। रवाहीन धातुओं को दो श्रेणियों में वर्गीकृत किया जा सकता है, या तो गैर-लोहचुंबकीय के रूप में, यदि वे Ln, Mg, Zr, Ti, Pd, Ca, Cu, Pt और Au, या लोहचुंबकीय मिश्र धातुओं से बने हों, यदि वे Fe, Co और Ni से बने हों।।[21] रवाहीन सामग्री की तापीय चालकता मणिभीय धातु की तुलना में कम होती है। चूंकि रवाहीन संरचना का निर्माण तेजी से ठंडा करने पर निर्भर करता है, यह रवाहीन संरचनाओं की अधिकतम प्राप्य मोटाई को सीमित करता है। धीमी शीतलन के दौरान भी रवाहीन संरचना के गठन को प्राप्त करने के लिए, मिश्र धातु को तीन या अधिक घटकों से बना होना चाहिए, जिससे जटिल क्रिस्टल इकाइयां उच्च संभावित ऊर्जा और गठन की संभावना कम हो जाती हैं।[22] उच्च संकुलन घनत्व और कम मुक्त मात्रा प्राप्त करने के लिए घटकों के परमाणु त्रिज्या को काफी अलग (12% से अधिक) होना चाहिए। घटकों के संयोजन में मिश्रण की नकारात्मक गर्मी होनी चाहिए, क्रिस्टल न्यूक्लिएशन को बाधित करना और उस समय को लम्बा करना जब पिघला हुआ धातु शीतल अवस्था में रहता है।

जैसे-जैसे तापमान बदलता है, रवाहीन धातुओं की विद्युत प्रतिरोधकता नियमित धातुओं की तुलना में बहुत अलग व्यवहार करती है। जबकि नियमित धातुओं में प्रतिरोधकता सामान्यत: तापमान के साथ बढ़ती है, मैथेथेसन के नियम का पालन करते हुए, बड़ी संख्या में रवाहीन धातुओं में प्रतिरोधकता बढ़ते तापमान के साथ घटती पाई जाती है। यह प्रभाव 150 से 300 माइक्रोओम-सेंटीमीटर के बीच उच्च प्रतिरोधकता वाली रवाहीन धातुओं में देखा जा सकता है। इन धातुओं में, धातु की प्रतिरोधकता पैदा करने वाली प्रकीर्णन घटनाओं को अब सांख्यिकीय रूप से स्वतंत्र नहीं माना जा सकता है, इस प्रकार यह मैथिसन के नियम के टूटने की व्याख्या करता है। तथ्य यह है कि रवाहीन धातुओं में प्रतिरोधकता का तापीय परिवर्तन तापमान की एक बड़ी श्रृंखला पर नकारात्मक हो सकता है और उनके पूर्ण प्रतिरोधकता मूल्यों से संबंधित होता है, पहली बार 1973 में मूइज द्वारा देखा गया था, इसलिए मूइज-नियम शब्द गढ़ा गया था। [23] चुंबकीय धातुओं (लौह, कोबाल्ट, निकल) के साथ बोरॉन, सिलिकॉन, फास्फोरस और अन्य ग्लास फॉर्मर्स की मिश्र धातुओं में उच्च चुंबकीय संवेदनशीलता होती है, जिसमें कम निग्राहिता और उच्च विद्युत प्रतिरोध होता है। सामान्यत: एक धातु के गिलास की विद्युत चालकता परिमाण के उसी निम्न क्रम की होती है, जो पिघलने वाले बिंदु के ठीक ऊपर पिघली हुई धातु की होती है। उच्च प्रतिरोध वैकल्पिक चुंबकीय क्षेत्रों के अधीन होने पर भंवर धारा द्वारा कम नुकसान की ओर जाता है, उदाहरण के लिए ट्रांसफार्मर चुंबकीय कोर। उनकी कम निग्राहिता भी कम नुकसान में योगदान करती है।

1950 के दशक की आरंभिक में बकेल और हिल्श द्वारा रवाहीन धातु की पतली फिल्मों कीअतिचालकता की प्रयोगात्मक रूप से खोज की गई थी।[24] कुछ धात्विक तत्वों के लिए अतिचालक क्रांतिक तापमान Tc मणिभीय अवस्था की तुलना में रवाहीन अवस्था (जैसे मिश्रधातु पर) में अधिक हो सकता है, और कई स्थितियों में Tc संरचनात्मक विकार बढ़ने पर बढ़ता है। इलेक्ट्रॉन-फोनन युग्मन पर संरचनात्मक विकार के प्रभाव पर विचार करके इस व्यवहार को समझा और युक्तिसंगत बनाया जा सकता है।[25] रवाहीन धातुओं में बहुक्रिस्टलीय धातु मिश्र धातुओं की तुलना में उच्च तन्यता उपज शक्ति और उच्च लोचदार तनाव सीमा होती है, लेकिन उनका लचीलापन और थकान शक्ति कम होती है।[26] रवाहीन मिश्र धातुओं में संभावित उपयोगी गुणों की एक किस्म होती है। विशेष रूप से, वे समान रासायनिक संरचना के मणिभीय मिश्र धातुओं से अधिक मजबूत होते हैं, और वे मणिभीय मिश्र धातुओं की तुलना में बड़े प्रतिवर्ती (लोचदार) विरूपण को बनाए रख सकते हैं। रवाहीन धातुएं सीधे अपनी गैर-मणिभीय संरचना से अपनी ताकत प्राप्त करती हैं, जिसमें कोई भी दोष (जैसे विस्थापन) नहीं होता है जो मणिभीय मिश्र धातुओं की ताकत को सीमित करता है। एक आधुनिक रवाहीन धातु, जिसे विट्रेलॉय के नाम से जाना जाता है, की तन्यता ताकत उच्च ग्रेड टाइटेनियम से लगभग दोगुनी है। चूंकि, कमरे के तापमान पर धातु के गिलास नमनीय नहीं होते हैं और तनाव (यांत्रिकी) में लोड होने पर अचानक विफल हो जाते हैं, जो विश्वसनीयता-महत्वपूर्ण अनुप्रयोगों में सामग्री प्रयोज्यता को सीमित करता है, क्योंकि आसन्न विफलता स्पष्ट नहीं है। इसलिए, धातु मैट्रिक्स समग्र के उत्पादन में काफी रुचि है जिसमें एक धातु ग्लास मैट्रिक्स होता है जिसमें द्रुमाकृतिक कण या नमनीय मणिभीय धातु के फाइबर होते हैं।

बल्क रवाहीन मिश्र धातुओं की शायद सबसे उपयोगी संपत्ति यह है कि वे असली ग्लास हैं, जिसका अर्थ है कि वे नरम हो जाते हैं और गर्म होने पर प्रवाहित होते हैं। यह आसान प्रसंस्करण की अनुमति देता है, जैसे अंतः क्षेपण ढलाई द्वारा, बहुलक के समान ही। परिणाम स्वरूप, खेल उपकरण में उपयोग के लिए रवाहीन मिश्र धातुओं का व्यावसायीकरण किया गया है,[27] चिकित्सा उपकरणों, और इलेक्ट्रॉनिक उपकरणों के स्थितियों के रूप में।[28] रवाहीन धातुओं की पतली फिल्मों को उच्च वेग ऑक्सीजन ईंधन तकनीक के माध्यम से सुरक्षात्मक विलेपन के रूप में जमा किया जा सकता है।

अनुप्रयोग

वाणिज्यिक

वर्तमान में सबसे महत्वपूर्ण अनुप्रयोग कुछ लोहचुंबकीय धातु के गिलास के विशेष चुंबकीय गुणों के कारण है। कम चुंबकीयकरण हानि का उपयोग उच्च दक्षता वाले ट्रांसफार्मर (रवाहीन धातु ट्रांसफार्मर) में लाइन आवृत्ति और कुछ उच्च आवृत्ति ट्रांसफार्मर में किया जाता है। रवाहीन इस्पात (स्टील) एक बहुत ही भंगुर सामग्री है जो मोटर पटल में छेद करना मुश्किल बनाती है।[29] इसके अतिरिक्त इलेक्ट्रॉनिक वस्तु निगरानी (जैसे चोरी नियंत्रण निष्क्रिय आईडी टैग) अधिकांशत: इन चुंबकीय गुणों के कारण धातु के कांच का उपयोग करती है।

संयुक्त राज्य अमेरिका के ऊर्जा विभाग और एयरोस्पेस के नासा अनुसंधान के एक भाग के रूप में, कैल्टेक में एक वाणिज्यिक रवाहीन मिश्र धातु, विट्रेलॉय 1 (41.2% Zr, 13.8% Ti, 12.5% ​​Cu, 10% Ni, और 22.5% Be) विकसित किया गया था। [12]

Ti-बेस्ड धातु के गिलास को जब पतले पाइप में बनाया जाता है, तो इसकी तनन शक्ति अधिक होती है 2,100 MPa (300 ksi), 2% की लोचदार बढ़ाव और उच्च संक्षारण प्रतिरोध।[30] इन गुणों का उपयोग करते हुए, द्रव्यमान प्रवाह मीटर की संवेदनशीलता में सुधार के लिए एक Ti-Zr-Cu-Ni-Sn धातु कांच का उपयोग किया गया था। पदार्थ प्रवाह मीटर पारंपरिक मीटरों की तुलना में लगभग 28-53 गुना अधिक संवेदनशील होता है,[31] जो जीवाश्म-ईंधन, रसायन, पर्यावरण, अर्धचालक और चिकित्सा विज्ञान उद्योग में लागू किया जा सकता है।

Zr-Al-Ni-Cu आधारित धात्विक कांच को आकार दिया जा सकता है 2.2 to 5 by 4 mm (0.087 to 0.197 by 0.157 in) ऑटोमोबाइल और अन्य उद्योगों के लिए प्रेशर सेंसर, और ये सेंसर कोल्ड वर्किंग से बने पारंपरिक स्टेनलेस स्टील की तुलना में छोटे, अधिक संवेदनशील और अधिक दबाव सहन करने वाले होते हैं। इसके अतिरिक्त, इस मिश्रधातु का उपयोग 1.5 और 9.9 मिमी (0.059 और 0.390 इंच) व्यास वाली दुनिया की सबसे छोटी गियर वाली मोटर बनाने के लिए किया गया था जिसे उस समय उत्पादित और बेचा जाना था।[32]


संभावित

रवाहीन धातुएं अपने कांच के परिवर्तन के ऊपर अद्वितीय नरम व्यवहार प्रदर्शित करती हैं और धातु के गिलास तापसुघट्य बनाने के लिए इस नरमी का तेजी से पता लगाया गया है।[33] ऐसा कम मृदुकरण तापमान नैनोकणों (जैसे कार्बन नैनोट्यूब) और बल्क धातु के गिलास के संयोजन बनाने के लिए सरल तरीके विकसित करने की अनुमति देता है। यह दिखाया गया है कि धातु के कांच को 10 एनएम से लेकर कई मिलीमीटर तक की बहुत छोटी लंबाई के पैमाने पर प्रतिरूपित किया जा सकता है।[34] इससे नैनोइम्प्रिंट लिथोग्राफी की समस्या का समाधान हो सकता है जहां सिलिकॉन से बने महंगे नैनो-मोल्ड आसानी से टूट जाते हैं। धातु के गिलास से बने नैनो-मोल्ड बनाने में आसान होते हैं और सिलिकॉन मोल्ड्स की तुलना में अधिक टिकाऊ होते हैं। बहुलक की तुलना में बल्क धातु के गिलास के बेहतर इलेक्ट्रॉनिक, ऊष्मीय और यांत्रिक गुण उन्हें इलेक्ट्रॉनिक अनुप्रयोग जैसे क्षेत्र इलेक्ट्रॉन उत्सर्जन उपकरणों के लिए नैनोकम्पोजिट विकसित करने के लिए एक अच्छा विकल्प बनाते हैं।[35] Ti40Cu36Pd14Zr10 गैर-कार्सिनोजेनिक माना जाता है, टाइटेनियम से लगभग तीन गुना अधिक मजबूत है, और इसका लोचदार मापांक लगभग हड्डियों से मेल खाता है। इसमें उच्च कट फट/घिसावट का प्रतिरोध है और यह घर्षण पाउडर का उत्पादन नहीं करता है। जमने पर मिश्र धातु सिकुड़ने (ढलाई) से नहीं गुजरती है। एक सतह संरचना उत्पन्न की जा सकती है जो लेसर स्पंद का उपयोग करके सतह संशोधन द्वारा जैविक रूप से जुड़ी हुई है, जिससे हड्डी के साथ बेहतर जुड़ने की अनुमति मिलती है।[36] Mg60Zn35Ca5, रवाहीन संरचना प्राप्त करने के लिए तेजी से ठंडा किया गया, फ्रैक्चर को ठीक करने के लिए पेच, पिन, या प्लेट के रूप में हड्डियों में आरोपण के लिए जैव पदार्थ के रूप में लेहाई विश्वविद्यालय में जांच की जा रही है। पारंपरिक स्टील या टाइटेनियम के विपरीत, यह सामग्री लगभग 1 मिलीमीटर प्रति माह की दर से जीवों में घुल जाती है और इसे हड्डी के ऊतकों से बदल दिया जाता है। जिंक की मात्रा को बदलकर इस गति को समायोजित किया जा सकता है।[37] बल्क मेटैलिक ग्लास भी SAM2X5-630 जैसे बेहतर गुण प्रदर्शित करते हैं, जिसमें किसी भी स्टील मिश्र धातु के लिए उच्चतम दर्ज लोचदार सीमा होती है, शोधकर्ता के अनुसार, अनिवार्य रूप से इसकी उच्चतम सीमा होती है, जिस पर एक सामग्री स्थायी रूप से विकृत हुए बिना प्रभाव का सामना कर सकती है (सुघटयता) ). मिश्र धातु दबाव और तनाव का सामना कर सकती है 12.5 GPa (123,000 atm) किसी भी स्थायी विरूपण के बिना, यह अब तक दर्ज किए गए किसी भी थोक धातु के कांच का उच्चतम प्रभाव प्रतिरोध है (2016 तक)। यह कवच सामग्री और अन्य अनुप्रयोगों के लिए एक आकर्षक विकल्प के रूप में बनाता है जिसके लिए उच्च तनाव सहनशीलता की आवश्यकता होती है।[38][39][40]


योगात्मक निर्माण

धातु के गिलास को संश्लेषित करते समय एक चुनौती यह है कि उच्च शीतलन दर की आवश्यकता के कारण तकनीकें अधिकांशत: बहुत छोटे नमूने उत्पन्न करती हैं। 3 डी प्रिंटिग विधियों को बड़े थोक नमूने बनाने की विधि के रूप में सुझाया गया है। चयनात्मक लेज़र मेल्टिंग (SLM) एक योगात्मक निर्माण विधि का एक उदाहरण है जिसका उपयोग लोहे पर आधारित धातु के गिलास बनाने के लिए किया गया है।[41][42] लेज़र फ़ॉइल प्रिंटिंग (LFP) एक और तरीका है जहाँ रवाहीन धातुओं के फ़ॉइल को ढेर करके एक साथ वेल्ड किया जाता है, परत दर परत।[43]


मॉडलिंग और सिद्धांत

उच्च एंट्रॉपी मिश्र धातुओं के समान तरीके से परमाणु पैमाने के सिमुलेशन (घनत्व कार्यात्मक सिद्धांत ढांचे के भीतर) का उपयोग करके थोक धातु के कांच तैयार किए गए हैं।[44][45] इसने उनके व्यवहार, स्थिरता और कई अन्य गुणों के बारे में भविष्यवाणी करने की अनुमति दी है। जैसे, चरण स्थान या प्रयोगात्मक परीक्षण और त्रुटि की अधिक अनुभवजन्य खोज के बिना, नए थोक धातु ग्लास सिस्टम का परीक्षण और एक विशिष्ट उद्देश्य (जैसे हड्डी प्रतिस्थापन या विमान इंजन | एयरो-इंजन घटक) के लिए परीक्षण किया जा सकता है। चूंकि, सक्रिय अनुसंधान के वर्षों के बावजूद, धातु के गिलास के आवश्यक गुणों को नियंत्रित करने वाली परमाणु संरचनाओं की पहचान काफी चुनौतीपूर्ण सिद्ध हुई है।[46][47] एब-इनिटियो मॉलिक्यूलर डायनामिक्स (एमडी) सिमुलेशन ने पुष्टि की कि टनलिंग माइक्रोस्कोपी को स्कैन करके देखे गए Ni-Nb धातु के गिलास की परमाणु सतह संरचना एक तरह की स्पेक्ट्रमदर्शी है। नकारात्मक अनुप्रयुक्त पूर्वाग्रह पर यह ab-initio MD सिमुलेशन का उपयोग करके गणना की गई स्थिति की इलेक्ट्रॉनिक घनत्व की संरचना के कारण केवल एक नरम परमाणुओं (Ni) की कल्पना करता है।[48] रवाहीन धातुओं के इलेक्ट्रॉनिक गुणों को समझने का एक सामान्य तरीका उनकी तरल धातुओं से तुलना करना है, जो समान रूप से अव्यवस्थित हैं, और जिसके लिए स्थापित सैद्धांतिक ढांचे मौजूद हैं। सरल रवाहीन धातुओं के लिए, बोल्ट्जमैन समीकरण का उपयोग करके व्यक्तिगत इलेक्ट्रॉनों के संचलन के अर्ध-शास्त्रीय मॉडलिंग और आसपास के धातु में प्रत्येक नाभिक की इलेक्ट्रॉनिक क्षमता के अध्यारोपण के रूप में बिखरने की क्षमता का अनुमान लगाकर अच्छा अनुमान लगाया जा सकता है। गणनाओं को सरल बनाने के लिए, मफिन-टिन स्यूडोपोटेंशियल देने के लिए परमाणु नाभिक की इलेक्ट्रॉनिक क्षमता को छोटा किया जा सकता है। इस सिद्धांत में, दो मुख्य प्रभाव हैं जो बढ़ते तापमान के साथ प्रतिरोधकता के परिवर्तन को नियंत्रित करते हैं। दोनों तापमान बढ़ने पर धातु के परमाणु नाभिक के कंपन को सम्मलित करने पर आधारित हैं। पहला यह है कि परमाणु संरचना तेजी से धूमिल हो जाती है क्योंकि परमाणु नाभिक की सटीक स्थिति कम और अच्छी तरह से परिभाषित होती है। दूसरा फोनन का परिचय है। जबकि धुंधला करने से सामान्यत: धातु की प्रतिरोधकता कम हो जाती है, फ़ोनों की आरंभिक सामान्यत: बिखरने वाली जगहों को जोड़ती है और इसलिए प्रतिरोधकता बढ़ जाती है। साथ में, वे रवाहीन धातुओं में प्रतिरोधकता की विषम कमी की व्याख्या कर सकते हैं, क्योंकि पहला भाग दूसरे भाग से अधिक है। नियमित मणिभीय धातुओं के विपरीत, रवाहीन धातु में फोनोन का योगदान कम तापमान पर जमता नहीं है। परिभाषित क्रिस्टल संरचना की कमी के कारण, हमेशा कुछ फोनोन तरंग दैर्ध्य होते हैं जो उत्तेजित हो सकते हैं।[49][50] जबकि यह अर्ध-शास्त्रीय दृष्टिकोण कई रवाहीन धातुओं के लिए अच्छा है, यह सामान्यत: अधिक चरम स्थितियों में टूट जाता है। बहुत कम तापमान पर, इलेक्ट्रॉनों की क्वांटम प्रकृति एक दूसरे के साथ इलेक्ट्रॉनों के लंबी दूरी के हस्तक्षेप प्रभाव की ओर ले जाती है जिसे कमजोर स्थानीयकरण प्रभाव कहा जाता है। परमाणु संरचना बाध्य इलेक्ट्रॉनिक राज्यों को एंडरसन स्थानीयकरण कहलाती है, प्रभावी रूप से इलेक्ट्रॉनों को बाध्य कर सकती है और उनके गतिविधि को रोक सकती है।[51]


यह भी देखें

संदर्भ

  1. Some scientists only consider amorphous metals produced by rapid cooling from a liquid state to be glasses. Materials scientists commonly consider a glass to be any solid non-crystalline material, regardless of how it is produced.
  2. Ojovan, M. I.; Lee, W. B. E. (2010). "अव्यवस्थित ऑक्साइड सिस्टम में कनेक्टिविटी और ग्लास संक्रमण". Journal of Non-Crystalline Solids. 356 (44–49): 2534. Bibcode:2010JNCS..356.2534O. doi:10.1016/j.jnoncrysol.2010.05.012.
  3. Luborski, F E (1983). अनाकार धातु मिश्र (in English). Butterworths. pp. 3–7. ISBN 0408110309.
  4. Klement, W.; Willens, R. H.; Duwez, POL (1960). "ठोस सोने-सिलिकॉन मिश्र धातुओं में गैर-क्रिस्टलीय संरचना". Nature. 187 (4740): 869–870. Bibcode:1960Natur.187..869K. doi:10.1038/187869b0. S2CID 4203025.
  5. Libermann H. & Graham C. (1976). "अनाकार मिश्र धातु रिबन का उत्पादन और रिबन आयामों पर उपकरण मापदंडों का प्रभाव". IEEE Transactions on Magnetics. 12 (6): 921. Bibcode:1976ITM....12..921L. doi:10.1109/TMAG.1976.1059201.
  6. Roya, R & Majumdara, A.K. (1981). "Thermomagnetic and transport properties of metglas 2605 SC and 2605". Journal of Magnetism and Magnetic Materials. 25 (1): 83–89. Bibcode:1981JMMM...25...83R. doi:10.1016/0304-8853(81)90150-5.
  7. 7.0 7.1 Chen, H. S.; Inoue, A.; Masumoto, T. (July 1985). "Two-stage enthalpy relaxation behaviour of (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys upon annealing". Journal of Materials Science. 20 (7): 2417–2438. Bibcode:1985JMatS..20.2417C. doi:10.1007/BF00556071. S2CID 136986230.
  8. Yokoyama, Yoshihiko; Inoue, Akihisa (2007). "चतुर्धातुक Zr-Cu-Ni-Al बल्क ग्लासी मिश्र धातुओं के थर्मल और यांत्रिक गुणों की संरचनागत निर्भरता". Materials Transactions. 48 (6): 1282–1287. doi:10.2320/matertrans.MF200622.
  9. Inoue, Akihisa; Zhang, Tao (1996). "Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method". Materials Transactions, JIM. 37 (2): 185–187. doi:10.2320/matertrans1989.37.185.
  10. Qin, C.L.; Zhang, W.; Zhang, Q.S.; Asami, K.; Inoue, A. (31 January 2011). "Chemical characteristics of the passive surface films formed on newly developed Cu–Zr–Ag–Al bulk metallic glasses". Journal of Materials Research. 23 (8): 2091–2098. doi:10.1557/JMR.2008.0284.
  11. Inoue, A.; Sobu, S.; Louzguine, D. V.; Kimura, H.; Sasamori, K. (2011). "एससी युक्त अल्ट्राहाई स्ट्रेंथ अल-आधारित अनाकार मिश्र धातु". Journal of Materials Research. 19 (5): 1539. Bibcode:2004JMatR..19.1539I. doi:10.1557/JMR.2004.0206.
  12. 12.0 12.1 Peker, A.; Johnson, W. L. (25 October 1993). "A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5" (PDF). Applied Physics Letters. 63 (17): 2342–2344. Bibcode:1993ApPhL..63.2342P. doi:10.1063/1.110520.
  13. Inoue, A. (2000). "धात्विक सुपरकूल्ड तरल और बल्क अनाकार मिश्र धातुओं का स्थिरीकरण". Acta Materialia. 48 (1): 279–306. Bibcode:2000AcMat..48..279I. CiteSeerX 10.1.1.590.5472. doi:10.1016/S1359-6454(99)00300-6.
  14. U.Va. News Service, "University Of Virginia Scientists Discover Amorphous Steel Material is three times stronger than conventional steel and non-magnetic" Archived 2014-10-30 at the Wayback Machine, U.Va. News Services, 7/2/2004
  15. Google Patents listing for Patent WO 2006091875 A2, "Patent WO 2006091875 A2 - Amorphous steel composites with enhanced strengths, elastic properties and ductilities (Also published as US20090025834, WO2006091875A3)", Joseph S Poon, Gary J Shiflet, Univ Virginia, 8/31/2006
  16. "ग्लासी स्टील". ORNL Review. 38 (1). 2005. Archived from the original on 2005-04-08. Retrieved 2005-12-26.
  17. Ponnambalam, V.; Poon, S. J.; Shiflet, G. J. (2011). "एक सेंटीमीटर से बड़े व्यास की मोटाई वाले Fe-आधारित बल्क मैटेलिक ग्लास". Journal of Materials Research. 19 (5): 1320. Bibcode:2004JMatR..19.1320P. doi:10.1557/JMR.2004.0176.
  18. "आर्टिफिशियल इंटेलिजेंस मेटैलिक ग्लास की खोज को गति देता है". Physorg. April 13, 2018. Retrieved 2018-04-14.
  19. Ren, Fang; Ward, Logan; Williams, Travis; Laws, Kevin J.; Wolverton, Christopher; Hattrick-Simpers, Jason; Mehta, Apurva (13 April 2018). "मशीन लर्निंग और उच्च-थ्रूपुट प्रयोगों के पुनरावृत्ति के माध्यम से धातु के चश्मे की त्वरित खोज". Science Advances. 4 (4): eaaq1566. Bibcode:2018SciA....4.1566R. doi:10.1126/sciadv.aaq1566. PMC 5898831. PMID 29662953.
  20. Gloriant, Thierry (2003). "धातु के चश्मे और नैनोसंरचित मिश्रित सामग्री की सूक्ष्मता और अपघर्षक पहनने का प्रतिरोध". Journal of Non-Crystalline Solids (in English). 316 (1): 96–103. Bibcode:2003JNCS..316...96G. doi:10.1016/s0022-3093(02)01941-5.
  21. Inoue, A.; Takeuchi, A. (April 2011). "Recent development and application products of bulk glassy alloys☆". Acta Materialia. 59 (6): 2243–2267. Bibcode:2011AcMat..59.2243I. doi:10.1016/j.actamat.2010.11.027.
  22. Suryanarayana, C.; Inoue, A. (2011-06-03). थोक धातु चश्मा. ISBN 978-1-4398-5969-8.[page needed]
  23. Ciuchi, Sergio; Di Sante, Domenico; Dobrosavljević, Vladimir; Fratini, Simone (December 2018). "अव्यवस्थित धातुओं में मूइज सहसंबंधों की उत्पत्ति". NPJ Quantum Materials (in English). 3 (1): 44. arXiv:1802.00065. Bibcode:2018npjQM...3...44C. doi:10.1038/s41535-018-0119-y. ISSN 2397-4648. S2CID 55811938.
  24. Buckel, W.; Hilsch, R. (1956). "उत्कृष्ट टिन-बिस्मथ मिश्र धातुओं की सुपरकंडक्टिविटी और विद्युत प्रतिरोध". Z. Phys. 146 (1): 27–38. Bibcode:1956ZPhy..146...27B. doi:10.1007/BF01326000. S2CID 119405703.
  25. Baggioli, Matteo; Setty, Chandan; Zaccone, Alessio (2020). "अत्यधिक युग्मित अनाकार सामग्री में अतिचालकता का प्रभावी सिद्धांत". Physical Review B. 101 (21): 214502. arXiv:2001.00404. Bibcode:2020PhRvB.101u4502B. doi:10.1103/PhysRevB.101.214502. S2CID 209531947.
  26. Russell, Alan & Lee, Kok Loong (2005). अलौह धातुओं में संरचना-संपत्ति संबंध. John Wiley & Sons. p. 92. Bibcode:2005srnm.book.....R. ISBN 978-0-471-70853-7.
  27. "अनाकार मिश्र धातु स्टील और टाइटेनियम को पार करता है". NASA. Retrieved 2018-09-19.
  28. Telford, Mark (2004). "बल्क मैटेलिक ग्लास का मामला". Materials Today. 7 (3): 36–43. doi:10.1016/S1369-7021(04)00124-5.
  29. Ning, S. R.; Gao, J.; Wang, Y. G. (2010). "मोटरों में कम हानि वाली अक्रिस्टलीय धातुओं के अनुप्रयोगों की समीक्षा". Advanced Materials Research. 129–131: 1366–1371. doi:10.4028/www.scientific.net/AMR.129-131.1366. S2CID 138234876.
  30. Nishiyama, Nobuyuki; Amiya, Kenji; Inoue, Akihisa (October 2007). "औद्योगिक उत्पादों के लिए बल्क मैटेलिक ग्लास के नए अनुप्रयोग". Journal of Non-Crystalline Solids. 353 (32–40): 3615–3621. Bibcode:2007JNCS..353.3615N. doi:10.1016/j.jnoncrysol.2007.05.170.
  31. Nishiyama, N.; Amiya, K.; Inoue, A. (March 2007). "स्ट्रेन-सेंसिंग डिवाइसेस के लिए बल्क मैटेलिक ग्लास की हाल की प्रगति". Materials Science and Engineering: A. 449–451: 79–83. doi:10.1016/j.msea.2006.02.384.
  32. Inoue, A.; Wang, X.M.; Zhang, W. (2008). "बल्क मेटल ग्लास का विकास और अनुप्रयोग". Reviews on Advanced Materials Science. 18 (1): 1–9. CiteSeerX 10.1.1.455.4625.
  33. Saotome, Y.; Iwazaki, H. (2000). "Superplastic extrusion of microgear shaft of 10 μm in module". Microsystem Technologies. 6 (4): 126. doi:10.1007/s005420050180. S2CID 137549527.
  34. Kumar, G.; Tang, H. X.; Schroers, J. (2009). "अनाकार धातुओं के साथ नैनोमोल्डिंग". Nature. 457 (7231): 868–872. Bibcode:2009Natur.457..868K. doi:10.1038/nature07718. PMID 19212407. S2CID 4337794.
  35. Hojati-Talemi, Pejman (2011). "High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission". Applied Physics Letters. 99 (19): 194104. Bibcode:2011ApPhL..99s4104H. doi:10.1063/1.3659898.
  36. Maruyama, Masaaki (June 11, 2009). "जापानी विश्वविद्यालयों ने कृत्रिम फिंगर जॉइंट के लिए टीआई-आधारित धातुई ग्लास विकसित किया". Tech-on.
  37. "घुलनशील कांच के साथ हड्डियों को ठीक करना". Institute of Physics. October 1, 2009.
  38. "इंजीनियरों ने रिकॉर्ड तोड़ने वाला स्टील विकसित किया". Engineering.com. Retrieved 2022-06-24.
  39. "रिकॉर्ड-ब्रेकिंग स्टील का इस्तेमाल शरीर के कवच, उपग्रहों के लिए ढाल के लिए किया जा सकता है". jacobsschool.ucsd.edu (in English). Retrieved 2022-06-24.
  40. "SAM2X5-630: The steel industry fights back! | Writing about cars". writingaboutcars.com. Retrieved 2022-06-24.
  41. Pauly, Simon; Löber, Lukas; Petters, Romy; Stoica, Mihai; Scudino, Sergio; Kühn, Uta; Eckert, Jürgen (2013-01-01). "चुनिंदा लेजर मेल्टिंग द्वारा मैटेलिक ग्लास को प्रोसेस करना". Materials Today (in English). 16 (1–2): 37–41. doi:10.1016/j.mattod.2013.01.018. ISSN 1369-7021.
  42. Jung, Hyo Yun; Choi, Su Ji; Prashanth, Konda G.; Stoica, Mihai; Scudino, Sergio; Yi, Seonghoon; Kühn, Uta; Kim, Do Hyang; Kim, Ki Buem; Eckert, Jürgen (2015-12-05). "Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study". Materials & Design (in English). 86: 703–708. doi:10.1016/j.matdes.2015.07.145. ISSN 0264-1275.
  43. Shen, Yiyu; Li, Yingqi; Chen, Chen; Tsai, Hai-Lung (2017-03-05). "3D printing of large, complex metallic glass structures". Materials & Design (in English). 117: 213–222. doi:10.1016/j.matdes.2016.12.087. ISSN 0264-1275.
  44. King, D.M.; Middleburgh, S.C.; Liu, A.C.Y.; Tahini, H.A.; Lumpkin, G.R.; Cortie, M. (January 2014). "Formation and structure of V–Zr amorphous alloy thin films" (PDF). Acta Materialia. 83: 269–275. doi:10.1016/j.actamat.2014.10.016. hdl:10453/41214.
  45. Middleburgh, S.C.; Burr, P.A.; King, D.M.; Edwards, L.; Lumpkin, G.R.; Grimes, R.W. (November 2015). "Structural stability and fission product behaviour in U3Si". Journal of Nuclear Materials. 466: 739–744. Bibcode:2015JNuM..466..739M. doi:10.1016/j.jnucmat.2015.04.052.
  46. Royall, C. Patrick; Williams, Stephen R. (2015). "गतिशील गिरफ्तारी में स्थानीय संरचना की भूमिका". Physics Reports. गतिशील गिरफ्तारी में स्थानीय संरचना की भूमिका (in English). 560: 1–75. arXiv:1405.5691. Bibcode:2015PhR...560....1R. doi:10.1016/j.physrep.2014.11.004. ISSN 0370-1573. S2CID 118541003.
  47. Wei, Dan; Yang, Jie; Jiang, Min-Qiang; Dai, Lan-Hong; Wang, Yun-Jiang; Dyre, Jeppe C.; Douglass, Ian; Harrowell, Peter (2019). "अनाकार सामग्री में संरचना की उपयोगिता का आकलन करना". The Journal of Chemical Physics. 150 (11): 114502. arXiv:1809.08589. Bibcode:2019JChPh.150k4502W. doi:10.1063/1.5064531. ISSN 0021-9606. PMID 30902013.
  48. Belosludov, R (2020), "The atomic structure of a bulk metallic glass resolved by scanning tunneling microscopy and ab-initio", Journal of Alloys and Compounds, 816, p. 152680, doi:10.1016/j.jallcom.2019.152680, S2CID 210756852
  49. Ziman, J. M. (1961-08-01). "A theory of the electrical properties of liquid metals. I: The monovalent metals". The Philosophical Magazine. 6 (68): 1013–1034. Bibcode:1961PMag....6.1013Z. doi:10.1080/14786436108243361. ISSN 0031-8086.
  50. Nagel, S. R. (1977-08-15). "धातु के चश्मे में प्रतिरोधकता की तापमान निर्भरता". Physical Review B. 16 (4): 1694–1698. Bibcode:1977PhRvB..16.1694N. doi:10.1103/PhysRevB.16.1694.
  51. Anderson, P. W. (1958-03-01). "कुछ रैंडम लैटिस में प्रसार की अनुपस्थिति". Physical Review. 109 (5): 1492–1505. Bibcode:1958PhRv..109.1492A. doi:10.1103/PhysRev.109.1492.


अग्रिम पठन


बाहरी संबंध