ग्रासमैन संख्या
गणितीय भौतिकी में, हरमन ग्रासमैन के नाम पर एक ग्रासमान संख्या (जिसे एंटीकम्यूटिंग नंबर या सुपरनंबर भी कहा जाता है), जटिल संख्याओं पर बाहरी बीजगणित का एक तत्व है।[1] एक आयामी बीजगणित के विशेष मामले को दोहरी संख्या के रूप में जाना जाता है। ग्रासमैन नंबरों ने भौतिक विज्ञान में प्रारंभिक उपयोग देखा, जो फर्मीओनिक क्षेत्रों के लिए एक पथ अभिन्न सूत्रीकरण को व्यक्त करता है, हालांकि अब वे व्यापक रूप से superspace के लिए एक नींव के रूप में उपयोग किए जाते हैं, जिस पर सुपरसिमेट्री का निर्माण किया जाता है।
अनौपचारिक चर्चा
ग्रास्मान संख्याएं विरोधी आने वाले तत्वों या वस्तुओं द्वारा उत्पन्न होती हैं। एंटी-कम्यूटिंग ऑब्जेक्ट्स का विचार गणित के कई क्षेत्रों में उत्पन्न होता है: वे आम तौर पर अंतर ज्यामिति में देखे जाते हैं, जहां डिफरेंशियल फॉर्म एंटी-कम्यूटिंग होते हैं। विभेदक रूपों को आम तौर पर कई गुना डेरिवेटिव के रूप में परिभाषित किया जाता है; हालाँकि, कोई उस स्थिति पर विचार कर सकता है जहाँ कोई किसी भी अंतर्निहित कई गुना के अस्तित्व को भूल जाता है या अनदेखा कर देता है, और यह भूल जाता है या अनदेखा कर देता है कि रूपों को डेरिवेटिव के रूप में परिभाषित किया गया था, और इसके बजाय, बस एक ऐसी स्थिति पर विचार करें जहाँ किसी के पास ऐसी वस्तुएँ हों जो विरोधी हों, और कोई न हो अन्य पूर्व-निर्धारित या पूर्व-कल्पित गुण। ऐसी वस्तुएं एक क्षेत्र पर एक बीजगणित बनाती हैं, और विशेष रूप से ग्रासमैन बीजगणित या बाहरी बीजगणित।
ग्रासमान संख्याएं उस बीजगणित के तत्व हैं। संख्या का अपीलीकरण इस तथ्य से उचित है कि वे सामान्य संख्याओं के विपरीत व्यवहार नहीं करते हैं: उन्हें जोड़ा, गुणा और विभाजित किया जा सकता है: वे लगभग एक क्षेत्र (गणित) की तरह व्यवहार करते हैं। अधिक किया जा सकता है: ग्रासमान संख्याओं के बहुपदों पर विचार किया जा सकता है, जिससे होलोमॉर्फिक फ़ंक्शन के विचार की ओर अग्रसर होता है। कोई ऐसे कार्यों के डेरिवेटिव ले सकता है, और फिर एंटी-डेरिवेटिव्स पर भी विचार कर सकता है। इन विचारों में से प्रत्येक को ध्यान से परिभाषित किया जा सकता है, और सामान्य गणित से समान अवधारणाओं के लिए यथोचित रूप से मेल खाता है। सादृश्य वहाँ नहीं रुकता: किसी के पास supermathematics की एक पूरी शाखा होती है, जहाँ यूक्लिडियन स्पेस का एनालॉग सुपरस्पेस है, मैनिफोल्ड का एनालॉग supermanifold है, लाइ बीजगणित का एनालॉग लव सुपरएलजेब्रा है और इसी तरह। ग्रासमैन संख्याएं अंतर्निहित निर्माण हैं जो यह सब संभव बनाती हैं।
बेशक, कोई भी किसी अन्य क्षेत्र, या यहां तक कि रिंग (गणित) के लिए इसी तरह के कार्यक्रम का अनुसरण कर सकता है, और यह वास्तव में व्यापक रूप से और आमतौर पर गणित में किया जाता है। हालांकि, सुपरमैथमैटिक्स भौतिकी में एक विशेष महत्व रखता है, क्योंकि एंटी-कम्यूटिंग व्यवहार को फर्मों के क्वांटम-मैकेनिकल व्यवहार के साथ दृढ़ता से पहचाना जा सकता है: पाउली अपवर्जन सिद्धांत का एंटी-कम्यूटेशन है। इस प्रकार, ग्रासमान संख्याओं और सुपरमैथमैटिक्स का अध्ययन, सामान्य रूप से, भौतिकी में उनकी उपयोगिता द्वारा दृढ़ता से संचालित होता है।
विशेष रूप से, क्वांटम क्षेत्र सिद्धांत में, या अधिक संकीर्ण रूप से, दूसरा परिमाणीकरण, सीढ़ी ऑपरेटरों के साथ काम करता है जो बहु-कण क्वांटम राज्य बनाते हैं। फ़र्मियन्स के लिए सीढ़ी संचालक फ़ील्ड क्वांटा बनाते हैं जिसमें आवश्यक रूप से एंटी-सिमेट्रिक तरंग क्रिया होने चाहिए, क्योंकि यह पाउली अपवर्जन सिद्धांत द्वारा मजबूर है। इस स्थिति में, एक ग्रासमान संख्या तत्काल और सीधे एक लहर समारोह से मेल खाती है जिसमें कुछ (आमतौर पर अनिश्चित) संख्याएं होती हैं।
जब फ़र्मियों की संख्या निश्चित और परिमित होती है, तो स्पिन समूह के माध्यम से एंटीकोमुटेशन संबंधों और स्पिनरों के बीच एक स्पष्ट संबंध दिया जाता है। इस समूह को क्लिफोर्ड बीजगणित में इकाई-लंबाई वाले वैक्टर के सबसेट के रूप में परिभाषित किया जा सकता है, और स्वाभाविक रूप से एंटी-कम्यूटिंग वेइल स्पिनर्स में कारक होता है। विरोधी रूपांतरण और स्पिनर्स के रूप में अभिव्यक्ति स्पिन समूह के लिए स्वाभाविक रूप से उत्पन्न होती है। संक्षेप में, ग्रासमैन नंबरों को स्पिन से उत्पन्न होने वाले रिश्तों को छोड़ने और केवल एंटी-कम्यूटेशन के कारण रिश्तों को रखने के बारे में सोचा जा सकता है।
सामान्य विवरण और गुण
ग्रासमैन संख्याएँ व्यक्तिगत तत्व या बाहरी बीजगणित जनरेटर (गणित) के बिंदु हैं n ग्रासमैन चर या ग्रासमैन निर्देश या अत्यधिक प्रभावकारी , साथ n संभवतः अनंत होने के नाते। ग्रासमान चर शब्द का उपयोग ऐतिहासिक है; वे चर नहीं हैं, दर असल; उन्हें एक इकाई बीजगणित के आधार तत्वों के रूप में बेहतर समझा जाता है। शब्दावली इस तथ्य से आती है कि एक प्राथमिक उपयोग अभिन्न को परिभाषित करना है, और यह कि एकीकरण का चर ग्रासमैन-मूल्यवान है, और इस प्रकार, भाषा के दुरुपयोग से, ग्रासमैन चर कहा जाता है। इसी तरह, दिशा की धारणा सुपरस्पेस की धारणा से आती है, जहां सामान्य यूक्लिडियन स्थान को अतिरिक्त ग्रासमैन-मूल्यवान दिशाओं के साथ विस्तारित किया जाता है। आवेश का पदनाम आवेश (भौतिकी) की धारणा से आता है, जो भौतिक समरूपता के जनक (नोएदर के प्रमेय के माध्यम से) के अनुरूप है। कथित समरूपता यह है कि एक एकल ग्रासमैन चर द्वारा गुणन स्वैप करता है फर्मीऑन और बोसोन के बीच ग्रेडिंग; इस पर नीचे और अधिक विस्तार से चर्चा की गई है।
ग्रासमैन चर एक सदिश स्थान (आयाम के) के आधार वैक्टर हैं n). वे एक क्षेत्र पर एक बीजगणित बनाते हैं, आमतौर पर क्षेत्र को जटिल संख्या के रूप में लिया जाता है, हालांकि कोई अन्य क्षेत्रों पर विचार कर सकता है, जैसे कि वास्तविक। बीजगणित एक इकाई बीजगणित है, और जेनरेटर विरोधी यात्रा कर रहे हैं:
के बाद से जटिल संख्याओं पर एक सदिश स्थान के तत्व हैं, परिभाषा के अनुसार, वे जटिल संख्याओं के साथ आवागमन करते हैं। यानी कॉम्प्लेक्स के लिए x, किसी के पास
जेनरेटर के वर्ग गायब हो जाते हैं:
- तब से
दूसरे शब्दों में, एक ग्रासमैन वैरिएबल शून्य का गैर-शून्य वर्गमूल है।
औपचारिक परिभाषा
औपचारिक रूप से, चलो V सेम n-आयामी जटिल सदिश स्थान आधार के साथ . ग्रासमैन बीजगणित जिसके ग्रासमैन चर हैं के बाहरी बीजगणित के रूप में परिभाषित किया गया है V, अर्थात्
कहाँ बाहरी उत्पाद है और प्रत्यक्ष योग है। इस बीजगणित के अलग-अलग तत्वों को ग्रासमान संख्या कहा जाता है। वेज सिंबल को छोड़ना मानक है परिभाषा स्थापित होने के बाद ग्रासमान संख्या लिखते समय। एक सामान्य ग्रासमान संख्या के रूप में लिखा जा सकता है
कहाँ सख्ती से बढ़ रहे हैं k-साथ tuples , और यह रैंक के जटिल, पूरी तरह से एंटीसिमेट्रिक टेंसर हैं k. फिर से, , और यह (का विषय है ), और बड़े परिमित उत्पादों को यहां उप-स्थानों के आधार वैक्टर की भूमिका निभाने के लिए देखा जा सकता है .
ग्रासमैन बीजगणित द्वारा उत्पन्न n रैखिक रूप से स्वतंत्र ग्रासमैन चर का आयाम है 2n; यह उपरोक्त योग पर लागू द्विपद प्रमेय से आता है, और तथ्य यह है कि {{math|(n + 1)}ऊपर दिए गए एंटी-कम्यूटेशन संबंधों द्वारा }-गुना चर का उत्पाद गायब हो जाना चाहिए। का आयाम द्वारा दिया गया है n चुनना k, द्विपद गुणांक। का विशेष मामला n = 1 को दोहरी संख्या कहा जाता है, और 1873 में विलियम किंग्डन क्लिफोर्ड द्वारा पेश किया गया था।
यदि V अनंत-आयामी है, उपरोक्त श्रृंखला समाप्त नहीं होती है और एक परिभाषित करती है
सामान्य तत्व अब है
कहाँ कभी-कभी शरीर और कहा जाता है सुपरनंबर की आत्मा के रूप में .
गुण
परिमित-आयामी मामले में (उसी शब्दावली का उपयोग करते हुए) आत्मा शून्य है, अर्थात।
लेकिन अनंत-आयामी मामले में ऐसा जरूरी नहीं है।[2] अगर V परिमित-आयामी है, तब
और अगर V अनंत-आयामी है[3]
परिमित बनाम जनरेटर के गणनीय सेट
आमतौर पर साहित्य में दो अलग-अलग प्रकार के सुपरनंबर दिखाई देते हैं: आमतौर पर जेनरेटर की एक सीमित संख्या के साथ n = 1, 2, 3 या 4, और जनरेटर की गिनती-अनंत संख्या के साथ। ये दो स्थितियाँ उतनी असंबंधित नहीं हैं जितनी पहली नज़र में लग सकती हैं। सबसे पहले, एक सुपरमैनिफोल्ड की परिभाषा में, एक संस्करण जनरेटर की गिनती-असीमित संख्या का उपयोग करता है, लेकिन फिर एक टोपोलॉजी को नियोजित करता है जो आयाम को एक छोटी परिमित संख्या में प्रभावी रूप से कम कर देता है।[4][5] दूसरे मामले में, कोई जनरेटर की एक सीमित संख्या के साथ शुरू कर सकता है, लेकिन दूसरी परिमाणीकरण के दौरान, अनंत संख्या में जनरेटर की आवश्यकता उत्पन्न होती है: प्रत्येक संभावित गति के लिए एक जो कि एक फ़र्मियन ले सकता है।
इनवोल्यूशन, फील्ड का चुनाव
जटिल संख्याओं को आमतौर पर ग्रासमैन संख्याओं की परिभाषा के लिए क्षेत्र के रूप में चुना जाता है, जो वास्तविक संख्याओं के विपरीत होती है, क्योंकि यह कुछ अजीब व्यवहारों से बचा जाता है जब एक संयुग्मन या समावेशन (गणित) पेश किया जाता है। ग्रासमैन नंबरों पर एक ऑपरेटर * का परिचय देना आम है जैसे कि:
कब एक जनरेटर है, और ऐसा है
इसके बाद ग्रासमैन संख्या z पर विचार किया जा सकता है , और इन्हें (सुपर) वास्तविक कहते हैं, जबकि जो पालन करते हैं (सुपर) काल्पनिक कहा जाता है। ये परिभाषाएँ ठीक से चलती हैं, भले ही ग्रासमैन संख्याएँ वास्तविक संख्याओं को आधार क्षेत्र के रूप में उपयोग करती हैं; हालाँकि, ऐसे मामले में, कई गुणांक गायब होने के लिए मजबूर हो जाते हैं यदि जनरेटर की संख्या 4 से कम है। इस प्रकार, सम्मेलन द्वारा, ग्रासमान संख्या आमतौर पर जटिल संख्याओं पर परिभाषित की जाती है।
अन्य सम्मेलन संभव हैं; उपरोक्त को कभी-कभी डेविट कन्वेंशन के रूप में संदर्भित किया जाता है; रोजर्स कार्यरत हैं शामिल होने के लिए। इस परिपाटी में, वास्तविक सुपरनंबरों में हमेशा वास्तविक गुणांक होते हैं; जबकि डेविट कन्वेंशन में, वास्तविक सुपरनंबरों में वास्तविक और काल्पनिक दोनों गुणांक हो सकते हैं। इसके बावजूद, आमतौर पर डेविट कन्वेंशन के साथ काम करना सबसे आसान होता है।
विश्लेषण
ग्रासमैन वैरिएबल की एक विषम संख्या के उत्पाद एक-दूसरे के साथ एंटी-कम्यूट करते हैं; ऐसे उत्पाद को अक्सर एक-नंबर कहा जाता है। ग्रासमैन वैरिएबल्स की सम संख्या वाले उत्पाद कम्यूट (सभी ग्रासमैन नंबरों के साथ); उन्हें अक्सर c-नंबर कहा जाता है। शब्दावली के दुरुपयोग से, एक ए-नंबर को कभी-कभी एंटीकम्यूटिंग सी-नंबर कहा जाता है। सम और विषम उपस्थानों में यह अपघटन एक प्रदान करता है बीजगणित पर वर्गीकृत (गणित); इस प्रकार ग्रासमैन बीजगणित सुपरकम्यूटेटिव बीजगणित के प्रोटोटाइपिक उदाहरण हैं। ध्यान दें कि सी-नंबर का एक सबलजेब्रा बनाते हैं , लेकिन a-नंबर नहीं हैं (वे एक सबस्पेस हैं, सबलजेब्रा नहीं)।
ग्रासमैन संख्या की परिभाषा जटिल संख्याओं पर विश्लेषण के अनुरूप गणितीय विश्लेषण करने की अनुमति देती है। यही है, कोई सुपरहोलोमॉर्फिक फ़ंक्शन को परिभाषित कर सकता है, डेरिवेटिव्स को परिभाषित कर सकता है, साथ ही अभिन्नताओं को परिभाषित कर सकता है। दोहरी संख्याओं पर लेख में कुछ बुनियादी अवधारणाओं को अधिक विस्तार से विकसित किया गया है।
एक सामान्य नियम के रूप में, सामान्य गणितीय संस्थाओं के सुपर-सममित एनालॉग्स को परिभाषित करना आमतौर पर आसान होता है, जिसमें ग्रासमैन नंबरों के साथ जनरेटर की अनंत संख्या के साथ काम किया जाता है: अधिकांश परिभाषाएँ सीधी हो जाती हैं, और संबंधित बोसोनिक परिभाषाओं से ली जा सकती हैं। उदाहरण के लिए, एक एकल ग्रासमान संख्या को एक आयामी स्थान उत्पन्न करने के बारे में सोचा जा सकता है। एक सदिश स्थान, द m-आयामी सुपरस्पेस, तब के रूप में प्रकट होता है m-गुना इन एक आयामी कार्टेशियन उत्पाद [clarification needed] यह दिखाया जा सकता है कि यह अनिवार्य रूप से एक बीजगणित के बराबर है m जनरेटर, लेकिन इसके लिए काम की आवश्यकता है।[6][clarification needed]
स्पिनर स्पेस
स्पिन समूह#स्पिनर स्पेस को ग्रासमैन या बाहरी बीजगणित के रूप में परिभाषित किया गया है वेइल स्पिनर्स के स्थान का (और विरोधी स्पिनर ), जैसे कि n fermions के तरंग कार्य संबंधित हैं .
एकीकरण
ग्रासमैन संख्याओं पर समाकलन को बेरेज़िन समाकलन (कभी-कभी ग्रासमान समाकल कहा जाता है) के रूप में जाना जाता है। फर्मी क्षेत्र के लिए अभिन्न पथ को पुन: पेश करने के लिए, ग्रासमैन एकीकरण की परिभाषा में निम्नलिखित गुणों की आवश्यकता है:
- रैखिकता
- आंशिक एकीकरण सूत्र
इसके अलावा, टेलर किसी भी फ़ंक्शन का विस्तार करता है दो शर्तों के बाद समाप्त हो जाता है क्योंकि , और क्वांटम फील्ड थ्योरी को अतिरिक्त रूप से एकीकरण चर के बदलाव के तहत इनवेरियन की आवश्यकता होती है ऐसा है कि
इस स्थिति को संतुष्ट करने वाला एकमात्र रैखिक कार्य स्थिर (पारंपरिक रूप से 1) बार है B, इसलिए बेरेज़िन ने परिभाषित किया[7]
इसका परिणाम ग्रासमान मात्रा के एकीकरण के लिए निम्नलिखित नियमों में होता है:
इस प्रकार हम निष्कर्ष निकालते हैं कि ग्रासमैन संख्या के एकीकरण और विभेदन के संचालन समान हैं।
क्वांटम फील्ड थ्योरी के पथ इंटीग्रल फॉर्मूलेशन में ग्रासमैन मात्रा के निम्नलिखित गॉसियन अभिन्न की आवश्यकता होती है, जो फर्मीओनिक एंटीकॉम्यूटिंग फ़ील्ड्स के लिए आवश्यक है, जिसमें ए एन × एन मैट्रिक्स है:
- .
कन्वेंशन और जटिल एकीकरण
एकाधिक ग्रासमान संख्याओं को एकीकृत करते समय एक अस्पष्टता उत्पन्न होती है। अंतरतम अभिन्न प्रथम पैदावार करने वाला सम्मेलन
कुछ लेखक संचालकों के हर्मिटियन संयुग्मन के समान जटिल संयुग्मन को भी परिभाषित करते हैं,[8]
अतिरिक्त सम्मेलन के साथ
हम इलाज कर सकते हैं θ और θ* स्वतंत्र ग्रासमान संख्या के रूप में, और अपनाएं
इस प्रकार एक गॉसियन अभिन्न मूल्यांकन करता है
और का एक अतिरिक्त कारक θθ* प्रभावी रूप से के एक कारक का परिचय देता है (1/b), एक साधारण गाऊसी की तरह,
एकात्मकता साबित करने के बाद, हम एक हर्मिटियन मैट्रिक्स से जुड़े एक सामान्य गॉसियन इंटीग्रल का मूल्यांकन कर सकते हैं B eigenvalues के साथ bi,[8][9]
मैट्रिक्स प्रतिनिधित्व
ग्रासमान संख्या को मैट्रिक्स (गणित) द्वारा दर्शाया जा सकता है। उदाहरण के लिए, दो ग्रासमान संख्याओं द्वारा उत्पन्न ग्रासमान बीजगणित पर विचार करें और . इन ग्रासमान संख्याओं को 4×4 आव्यूहों द्वारा प्रदर्शित किया जा सकता है:
सामान्य तौर पर, एन जनरेटर पर ग्रासमैन बीजगणित को 2 द्वारा दर्शाया जा सकता हैएन × 2n वर्ग आव्यूह। भौतिक रूप से, इन आव्यूहों को व्यवसाय संख्या के आधार पर हिल्बर्ट अंतरिक्ष के एन समरूप फर्मों पर कार्य करने वाले संचालकों के उत्थान के रूप में सोचा जा सकता है। चूंकि प्रत्येक फर्मियन के लिए व्यवसाय संख्या 0 या 1 है, इसलिए 2 हैंn संभावित आधार बताता है। गणितीय रूप से, इन आव्यूहों की व्याख्या ग्रासमैन बीजगणित पर बाएँ बाहरी गुणन के अनुरूप रैखिक संचालकों के रूप में की जा सकती है।
सामान्यीकरण
ग्रासमैन नंबरों के लिए कुछ सामान्यीकरण हैं। इन्हें एन चर के संदर्भ में नियमों की आवश्यकता होती है जैसे कि:
जहां सूचकांकों को सभी क्रमपरिवर्तनों पर अभिव्यक्त किया जाता है ताकि परिणाम के रूप में:
कुछ N > 2 के लिए। ये N-टेंसर के अतिनिर्धारक की गणना करने के लिए उपयोगी होते हैं जहां N > 2 और 2 से बड़ी शक्तियों के लिए बहुपदों के भेदभाव की गणना के लिए भी। सीमित मामला भी है क्योंकि N अनंत की ओर जाता है जिस स्थिति में कोई परिभाषित कर सकता है संख्याओं पर विश्लेषणात्मक कार्य। उदाहरण के लिए, N = 3 के मामले में एक एकल ग्रासमान संख्या को मैट्रिक्स द्वारा दर्शाया जा सकता है:
ताकि . दो ग्रासमान संख्याओं के लिए मैट्रिक्स का आकार 10×10 होगा।
उदाहरण के लिए, दो ग्रासमैन चर वाले N = 3 के नियमों का अर्थ है:
ताकि यह दिखाया जा सके
इसलिए
जो 2×2×2 टेंसर के हाइपरडेटरमिनेंट के लिए एक परिभाषा देता है
यह भी देखें
- ग्रासमानियन
- हरमन ग्रासमैन (भाषाविद् और गणितज्ञ)
- सुपरस्पेस
- बाहरी बीजगणित
टिप्पणियाँ
- ↑ DeWitt 1984, Chapter 1, page 1.
- ↑ DeWitt 1984, pp. 1–2.
- ↑ DeWitt 1984, p. 2.
- ↑ Rogers 2007a, Chapter 1 (available online)
- ↑ Rogers 2007, Chapter 1 and Chapter 8.
- ↑ Rogers 2007
- ↑ Berezin, F. A. (1966). दूसरी परिमाणीकरण की विधि. Pure and Applied Physics. Vol. 24. New York. ISSN 0079-8193.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ 8.0 8.1 Peskin, Michael E.; Schroeder, Daniel V. (1995). क्वांटम क्षेत्र सिद्धांत का परिचय (5. (corrected) printing. ed.). Reading, Mass.: Addison-Wesley. ISBN 9780201503975.
- ↑ Indices' typo present in source.
संदर्भ
- DeWitt, B. (1984). Supermanifolds. Cambridge University Press. ISBN 0-521-42377-5.
- Peskin, Michael E.; Schroeder, Daniel V. (1995). An introduction to quantum field theory (5. (corrected) printing. ed.). Reading, Mass.: Addison-Wesley. ISBN 9780201503975.
- Rogers, Alice (2007a). Supermanifolds: Theory and Applications (PDF). World Scientific. Chapter 1. doi:10.1142/1878. ISBN 978-981-3203-21-1.
- Rogers, Alice (2007). Supermanifolds: Theory and Applications. World Scientific. ISBN 978-981-3203-21-1.