मिश्रित टेंसर

From Vigyanwiki
Revision as of 19:19, 25 April 2023 by alpha>Indicwiki (Created page with "{{Short description|Tensor having both covariant and contravariant indices}} {{redirect|Tensor type|the array data type|Tensor type (computing)}} {{No footnotes|date=October 2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

टेन्सर विश्लेषण में, एक मिश्रित टेन्सर एक टेन्सर होता है जो न तो सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण होता है और न ही सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण; एक मिश्रित टेन्सर का कम से कम एक सूचकांक एक सबस्क्रिप्ट (सहसंयोजक) होगा और कम से कम एक सूचकांक एक सुपरस्क्रिप्ट (प्रतिपरिवर्ती) होगा।

प्रकार या वैलेंस का एक मिश्रित टेंसर , लिखित प्रकार (M, N), M > 0 और N > 0 दोनों के साथ, एक टेन्सर है जिसमें M प्रतिपरिवर्ती सूचकांक और N सहपरिवर्ती सूचकांक हैं। इस तरह के एक टेंसर को एक रैखिक ऑपरेटर के रूप में परिभाषित किया जा सकता है जो एम एक प्रपत्र और एन वेक्टर (ज्यामिति) के एक (एम + एन) -ट्यूपल को स्केलर (गणित) में मैप करता है।

टेंसर प्रकार बदलना

संबंधित टेंसरों के निम्नलिखित ऑक्टेट पर विचार करें:

पहला सहपरिवर्ती है, अंतिम प्रतिपरिवर्ती है, और शेष मिश्रित हैं। सांकेतिक रूप से, ये टेन्सर एक दूसरे से उनके सूचकांकों के सहप्रसरण/प्रतिप्रसरण द्वारा भिन्न होते हैं। टेंसर के दिए गए कॉन्ट्रावेरिएंट इंडेक्स को मीट्रिक टेंसर का उपयोग करके कम किया जा सकता है gμν, और दिए गए सहपरिवर्ती सूचकांक को व्युत्क्रम मीट्रिक टेंसर का उपयोग करके बढ़ाया जा सकता है gμν. इस प्रकार, gμν को इंडेक्स लोअरिंग ऑपरेटर कहा जा सकता है और gμν सूचकांक बढ़ाने वाला ऑपरेटर।

आम तौर पर, सहपरिवर्ती मीट्रिक टेन्सर, प्रकार (एम, एन) के एक टेंसर के साथ अनुबंधित होता है, प्रकार (एम -1, एन + 1) का एक टेंसर उत्पन्न करता है, जबकि इसका प्रतिपरिवर्ती व्युत्क्रम, प्रकार (एम, एन) के टेंसर के साथ अनुबंधित होता है। , प्रकार (M + 1, N − 1) का टेंसर देता है।

उदाहरण

एक उदाहरण के रूप में, प्रकार (1, 2) का एक मिश्रित टेन्सर प्रकार (0, 3) के सहसंयोजक टेन्सर के सूचकांक को बढ़ाकर प्राप्त किया जा सकता है,

कहाँ के समान टेंसर है , क्योंकि
क्रोनकर के साथ δ यहां एक आइडेंटिटी मैट्रिक्स की तरह काम कर रहा है।

वैसे ही,

मेट्रिक टेन्सर के एक सूचकांक को ऊपर उठाना इसके व्युत्क्रम के साथ इसे अनुबंधित करने के बराबर है, जो क्रोनकर डेल्टा को प्राप्त करता है,
इसलिए मीट्रिक टेन्सर का कोई भी मिश्रित संस्करण क्रोनकर डेल्टा के बराबर होगा, जिसे भी मिश्रित किया जाएगा।

यह भी देखें

संदर्भ

  • D.C. Kay (1988). Tensor Calculus. Schaum’s Outlines, McGraw Hill (USA). ISBN 0-07-033484-6.
  • Wheeler, J.A.; Misner, C.; Thorne, K.S. (1973). "§3.5 Working with Tensors". Gravitation. W.H. Freeman & Co. pp. 85–86. ISBN 0-7167-0344-0.
  • R. Penrose (2007). The Road to Reality. Vintage books. ISBN 978-0-679-77631-4.


बाहरी संबंध