त्रिगुट विखंडन
त्रिगुट विखंडन तुलनात्मक रूप से दुर्लभ (0.2 से 0.4% घटनाओं का) प्रकार का परमाणु विखंडन है जिसमें दो के बजाय तीन कूलम्ब प्रतिकर्षण उत्पन्न होते हैं अन्य परमाणु विखंडन प्रक्रियाओं की तरह, अन्य अपरिवर्तित कण जैसे कि कई न्यूट्रॉन और गामा किरणे त्रिगुट विखंडन में उत्पन्न होती हैं।
त्रिगुट विखंडन न्यूट्रॉन-प्रेरित विखंडन या सहज विखंडन (रेडियोधर्मी क्षय का प्रकार) के समय हो सकता है। थर्मल न्यूट्रॉन अधिकृत करने के पश्चात बने समान विखंडन प्रणाली के सापेक्ष में सहज विखंडन में लगभग 25% अधिक त्रिगुट विखंडन होता है,[1] तथा यह दर्शाता है कि न्यूट्रॉन के अवशोषण के पश्चात भी ये प्रक्रियाएँ भौतिक रूप से थोड़ी भिन्न होती हैं। संभवतः थर्मल न्यूट्रॉन-प्रेरित विखंडन की परमाणु प्रतिक्रिया ऊर्जा प्रणाली में उपस्थित होती है।
चतुर्धातुक विखंडन, 1 प्रति 10 मिलियन विखंडन पर भी जाना जाता है (नीचे देखें)।
उत्पाद
सबसे आम परमाणु विखंडन प्रक्रिया बाइनरी विखंडन है। यह 95±15 और 135±15 यू परमाणु द्रव्यमान पर अधिकतम संभावित आवेशित उत्पाद के साथ दो आवेशित असममित परमाणु विखंडन उत्पाद का उत्पादन करता है। हालांकि, बड़े नाभिकों के इस पारंपरिक विखंडन में, द्विआधारी प्रक्रिया केवल इसलिए होती है क्योंकि यह सबसे ऊर्जावान रूप से संभव है।
एक परमाणु रिएक्टर में कहीं भी 2 से 4 विखंडन प्रति 1000 में, वैकल्पिक टर्नरी विखंडन प्रक्रिया तीन सकारात्मक रूप से आवेशित टुकड़े (प्लस न्यूट्रॉन, जो चार्ज नहीं होते हैं और इस गणना में नहीं गिने जाते हैं) का उत्पादन करते हैं। चार्ज किए गए उत्पादों में से सबसे छोटा एक प्रोटॉन (जेड = 1) के रूप में इतने छोटे चार्ज और द्रव्यमान से लेकर आर्गन के नाभिक (जेड = 18) जितना बड़ा टुकड़ा हो सकता है।
यद्यपि आर्गन नाभिक जितना बड़ा कण सामान्य त्रिगुट विखंडन में छोटे (तीसरे) आवेशित उत्पाद के रूप में उत्पादित किया जा सकता है, त्रिगुट विखंडन से सबसे आम छोटे टुकड़े हीलियम-6 नाभिक होते हैं, जो लगभग 90% का निर्माण करते हैं। छोटे टुकड़े उत्पाद। यह उच्च घटना अल्फा कण की स्थिरता (उच्च बाध्यकारी ऊर्जा) से संबंधित है, जो प्रतिक्रिया के लिए अधिक ऊर्जा उपलब्ध कराती है। त्रिगुट विखंडन में उत्पन्न होने वाले दूसरे सबसे आम कण ट्राइटन (भौतिकी) एस (ट्रिटियम के नाभिक) हैं, जो कुल छोटे टुकड़ों का 7% बनाते हैं, और तीसरा सबसे हीलियम -6 नाभिक है (जो लगभग 0.8 में क्षय होता है) सेकंड से लिथियम-6)। प्रोटॉन और बड़े नाभिक छोटे अंश (<2%) में होते हैं जो छोटे आवेशित उत्पादों के शेष भाग को बनाते हैं। त्रिगुट विखंडन से दो बड़े आवेशित कण, विशेष रूप से जब अल्फा उत्पन्न होते हैं, बाइनरी विखंडन में उत्पादित कणों के आकार वितरण में काफी समान होते हैं।
उत्पाद ऊर्जा
तीसरे बहुत छोटे उत्पाद की ऊर्जा आमतौर पर 10 और 20 MeV के बीच होती है। अपनी उत्पत्ति को ध्यान में रखते हुए, त्रिगुट विखंडन द्वारा उत्पादित अल्फा कणों में आमतौर पर लगभग ~ 16 MeV की औसत ऊर्जा होती है (इस महान ऊर्जा को अल्फा क्षय में कभी नहीं देखा जाता है)। चूंकि इनमें आम तौर पर अल्फा क्षय से ~ 5 MeV अल्फा कणों की तुलना में काफी अधिक ऊर्जा होती है, इसलिए उन्हें लंबी दूरी के अल्फा कहा जाता है (हवा या अन्य मीडिया में उनकी लंबी दूरी का जिक्र)।
अन्य दो बड़े टुकड़े अपनी गतिज ऊर्जा में विखंडन गतिज ऊर्जा के शेष भाग को ले जाते हैं (आमतौर पर भारी तत्व विखंडन में ~ 170 MeV कुल) जो कि तीसरे छोटे उत्पाद द्वारा दूर की गई 10 से 20 MeV गतिज ऊर्जा के रूप में प्रकट नहीं होता है। . इस प्रकार, त्रिगुट विखंडन में बड़े टुकड़े प्रत्येक कम ऊर्जावान होते हैं, एक विशिष्ट 5 से 10 MeV तक, वे द्विआधारी विखंडन में देखे जाते हैं।
महत्व
यद्यपि टर्नरी विखंडन प्रक्रिया बाइनरी प्रक्रिया की तुलना में कम आम है, फिर भी यह आधुनिक परमाणु रिएक्टरों की ईंधन छड़ों में हीलियम -4 और ट्रिटियम गैस का निर्माण करती है।[2] सवाना नदी राष्ट्रीय प्रयोगशाला के वातावरण में 1957 में पहली बार इस घटना का पता चला था।[3]
सही त्रिगुट विखंडन
एक बहुत ही दुर्लभ प्रकार की त्रिगुट विखंडन प्रक्रिया को कभी-कभी वास्तविक त्रिगुट विखंडन कहा जाता है। यह तीन लगभग समान आकार के आवेशित अंशों (Z ~ 30) का उत्पादन करता है, लेकिन 100 मिलियन विखंडन की घटनाओं में लगभग 1 में ही होता है। इस प्रकार के विखंडन में, उत्पाद नाभिक विखंडन ऊर्जा को लगभग तीन बराबर भागों में विभाजित करता है और इसकी गतिज ऊर्जा ~ 60 MeV होती है। त्रिगुट विखंडन अब तक केवल भारी, उच्च ऊर्जा वाले आयनों द्वारा बमबारी किए गए नाभिकों में देखा गया है।[4]
चतुर्धातुक विखंडन
एक और दुर्लभ विखंडन प्रक्रिया, जो 10 मिलियन विखंडनों में लगभग 1 में होती है, चतुर्धातुक विखंडन है। यह त्रिगुट विखंडन के समान है, सिवाय इसके कि चार आवेशित उत्पाद दिखाई देते हैं। आम तौर पर इनमें से दो प्रकाश कण होते हैं, जिसमें चतुर्धातुक विखंडन का सबसे आम तरीका स्पष्ट रूप से दो बड़े कण और दो अल्फा कण होते हैं (एक अल्फा के बजाय, त्रिगुट विखंडन का सबसे सामान्य तरीका)।[5]
संदर्भ
- ↑ https://web-docs.gsi.de/~wolle/FISSION/ternary/ternary.html Fraction ternary fission as a function of different Z and A in fissile isotopes.
- ↑ [1] Comparative study of the ternary particle emission in 243-Cm (nth,f) and 244-Cm(SF). S. Vermote, et al. in Dynamical aspects of nuclear fission: proceedings of the 6th International Conference. Ed. J. Kliman, M. G. Itkis, S. Gmuca. World Scientific Publishing Co. Pte. Ltd. Singapore. (2008)
- ↑ Discovery That Nuclear Fission Produces Tritium Edward L. Albenesius, J. Henry Horton Harold M. Kelley, Daniel S. St. John, and Robert S. Ondrejcin
- ↑ "सच्चा टर्नरी विखंडन". January 2003.
{{cite web}}
: CS1 maint: url-status (link) - ↑ Ternary and Quaternary fission