लेबेस्ग कवरिंग आयाम

From Vigyanwiki
Revision as of 17:30, 26 April 2023 by alpha>Saurabh

गणित में, टोपोलॉजिकल स्पेस के आयाम या टोपोलॉजिकल आयाम को आवरण करने वाला लेबेस्ग्यू स्पेस के आयाम को परिभाषित करने के कई अलग-अलग विधियों में से एक सामयिक अपरिवर्तनीय विधि है।[1][2]

अनौपचारिक चर्चा

सामान्य यूक्लिडियन अंतरिक्ष स्थान के लिए, लेबेस्ग कवरिंग आयाम केवल साधारण यूक्लिडियन आयाम है: अंक के लिए शून्य, रेखाओं के लिए एक, विमानों के लिए दो, और इसी तरह चूँकि, सभी टोपोलॉजिकल स्पेस में इस तरह का स्पष्ट आयाम नहीं होता है, और इसलिए ऐसे स्थितियों में एक स्पष्ट परिभाषा की आवश्यकता होती है। जब अंतरिक्ष खुले समुच्च्यो द्वारा आवरण किया जाता है तो क्या होता है इसकी जांच करके परिभाषा आगे बढ़ती है।

सामान्यतः, एक टोपोलॉजिकल स्पेस एक्स खुला ढक्कन हो सकता है, जिसमें कोई खुला समुच्च्य का संग्रह पा सकता है जैसे कि एक्स उनके संघ (समुच्च्य थ्योरी) के अंदर स्थित है। कवरिंग आयाम सबसे छोटी संख्या n है जैसे कि हर आवरण के लिए, एक शोधन (टोपोलॉजी) होता है जिसमें X में हर बिंदु n + 1 कवरिंग समुच्च्य से अधिक नहीं के प्रतिच्छेदन (समुच्च्य थ्योरी) में निहित होता है। यह नीचे दी गई औपचारिक परिभाषा का सार है। परिभाषा का लक्ष्य एक संख्या (एक पूर्णांक) प्रदान करना है जो स्थान का वर्णन करता है, और बदलता नहीं है क्योंकि स्थान लगातार विकृत होता है; अर्थात्, एक संख्या जो होमियोमोर्फिज्म के अंतर्गत अपरिवर्तनीय है।

सामान्य विचार नीचे दिए गए आरेखों में चित्रित किया गया है, जो एक वृत्त और एक वर्ग के आवरण और परिशोधन को दर्शाता है।

एक वृत्त के आवरण का शोधन
पहली छवि एक काली गोलाकार रेखा के रंगीन आवरण (शीर्ष पर) के शोधन (नीचे) को दिखाती है। ध्यान दें कि परिशोधन में, रेखा पर कोई बिंदु दो से अधिक समुच्च्यो में समाहित नहीं है, और यह भी कि कैसे समुच्च्य एक "श्रृंखला" बनाने के लिए एक दूसरे से जुड़ते हैं।
एक वर्ग के आवरण का शोधन
दूसरी छवि का शीर्ष आधा एक प्लानर आकार (अंधेरे) का एक आवरण (रंगीन) दिखाता है, जहां आकार के सभी बिंदु आवरण के समुच्च्य के एक से लेकर चारों तक कहीं भी समाहित होते हैं। नीचे यह दर्शाता है कि उक्त आवरण को परिष्कृत करने का कोई भी प्रयास ऐसा है कि कोई भी बिंदु दो से अधिक समुच्च्यो में समाहित नहीं होगा - अंततः निर्धारित सीमाओं के प्रतिच्छेदन पर विफल हो जाता है। इस प्रकार, एक प्लानर आकार "वेबी" नहीं है: इसे "चेन" के साथ आवरण नहीं किया जा सकता है। इसके अतिरिक्त, यह एक तरह से *मोटा* सिद्ध होता है। अधिक सख्ती से कहें तो इसका सामयिक आयाम 1 से अधिक होना चाहिए।


औपचारिक परिभाषा

हेनरी लेबेस्ग्यू ने 1921 में कवरिंग आयाम का अध्ययन करने के लिए बंद ईंटों का इस्तेमाल किया।[3]

आयाम को आवरण करने की पहली औपचारिक परिभाषा एडुआर्ड सीच द्वारा दी गई थी, जो हेनरी लेबेस्ग्यू के पहले के परिणाम पर आधारित थी।[4]

एक आधुनिक परिभाषा इस प्रकार है। टोपोलॉजिकल स्पेस का खुला आवरण X खुले समुच्च्य का वर्ग है | संपूर्ण स्थान Uα ऐसा वर्ग है, जैसे कि एक खुले आवरण Uα = X. का क्रम या प्लाई = {Uα} सबसे छोटी संख्या m है (यदि यह उपस्थित है) जिसके लिए अंतरिक्ष का प्रत्येक बिंदु अधिक से अधिक m आवरण में खुले समुच्च्य से संबंधित है |

एक विशेष स्थिति के रूप में, एक गैर-खाली टोपोलॉजिकल स्पेस शून्य-आयामी स्थान है। कवरिंग आयाम के संबंध में शून्य-आयामी यदि अंतरिक्ष के प्रत्येक खुले आवरण में एक परिशोधन होता है जिसमें असंबद्ध समुच्च्य खुले समुच्च्य होते हैं जिससे अंतरिक्ष में कोई भी बिंदु हो इस परिशोधन के ठीक एक खुले समुच्च्य में समाहित है।

खाली समुच्च्य में कवरिंग आयाम -1 है: खाली समुच्च्य के किसी भी खुले आवरण के लिए, खाली समुच्च्य का प्रत्येक बिंदु आवरण के किसी भी तत्व में समाहित नहीं है, इसलिए किसी भी खुले आवरण का क्रम 0 है।

उदाहरण

इकाई गोले के किसी भी दिए गए खुले आवरण में खुले (टोपोलॉजी) चापों के संग्रह से युक्त एक परिशोधन होगा। इस परिभाषा के अनुसार वृत्त का आयाम एक है, क्योंकि इस तरह के किसी भी आवरण को उस अवस्था में और परिष्कृत किया जा सकता है जहाँ वृत्त का एक बिंदु x अधिक से अधिक दो खुले चापों में समाहित है। यही है, चापों का जो भी संग्रह हम शुरू करते हैं, कुछ को छोड़ दिया या छोटा किया जा सकता है, जैसे कि शेष अभी भी गोले को आवरण करता है किन्तु सरल ओवरलैप्स के साथ होता है।

इसी तरह, द्वि-आयामी विमान (गणित) में इकाई डिस्क के किसी भी खुले आवरण को परिष्कृत किया जा सकता है जिससे डिस्क का कोई भी बिंदु तीन से अधिक खुले समुच्च्यो में समाहित न हो, जबकि दो सामान्य रूप से पर्याप्त नहीं हैं। डिस्क का आवरण आयाम इस प्रकार दो है।

अधिक सामान्यतः, एन-डायमेंशनल यूक्लिडियन स्पेस आवरण आयाम n है।

गुण

  • होमोमॉर्फिक रिक्त स्थान का आवरण आयाम समान होता है। यही है, कवरिंग आयाम एक टोपोलॉजिकल इनवेरिएंट है।
  • एक सामान्य स्थान X का आवरण आयाम है यदि और केवल यदि एक्स के किसी भी बंद उपसमुच्चय ए के लिए, यदि निरंतर है, तो को का विस्तार है.| यहाँ, n-sphere|n-विम क्षेत्र है।
  • 'रंगीन आयाम पर ऑस्ट्रैंड की प्रमेय यदि X एक सामान्य टोपोलॉजिकल स्पेस है और = {Uα} स्थानीय रूप से परिमित आवरण है X क्रम ≤ n + 1, फिर, प्रत्येक 1 ≤ के लिए in + 1, जोड़ीदार असंयुक्त खुले समुच्च्यो का एक वर्ग उपस्थित है i = {Vi,α} सिकुड़ना , अर्थात। Vi,αUα, और एक X साथ आवरण करना होता है |[5]

आयाम की अन्य धारणाओं से संबंध

  • एक पैराकॉम्पैक्ट स्पेस के लिए X, कवरिंग आयाम को समान रूप से न्यूनतम मूल्य n के रूप में परिभाषित किया जा सकता है , ऐसा है कि हर खुला आवरण का X (किसी भी आकार का) में खुला परिशोधन है आदेश के साथ n + 1.[6] विशेष रूप से, यह सभी मीट्रिक रिक्त स्थान के लिए लागू होता है।
  • लेबेस्ग कवरिंग प्रमेय। Lebesgue कवरिंग आयाम एक परिमित सरल जटिल के affine डाइमेंशन के साथ मेल खाता है।
  • एक सामान्य स्थान का आवरण आयाम बड़े आगमनात्मक आयाम से कम या उसके बराबर होता है।
  • पैराकॉम्पैक्ट स्पेस हॉसडॉर्फ स्पेस स्पेस का कवरिंग आयाम इसके कोहोलॉजिकल आयाम से बड़ा या बराबर है (शेफ (गणित) के अर्थ में),[7] यानी एक के पास है हर पूले के लिए एबेलियन समूहों पर और हर के आवरण आयाम से बड़ा .
  • एक मीट्रिक स्थान में, एक आवरण की बहुलता की धारणा को मजबूत कर सकता है: एक आवरण हैr- अनेकता n + 1 यदि हर r-गेंद अधिकतम के साथ प्रतिच्छेद करती है n + 1 आवरण में समुच्च्य करता है। यह विचार स्पर्शोन्मुख आयाम की परिभाषाओं की ओर ले जाता है और अंतरिक्ष के असौद-नागाटा आयाम: स्पर्शोन्मुख आयाम वाला स्थान n है n-बड़े पैमाने पर आयामी, और असौद-नागाटा आयाम के साथ एक स्थान n है n-हर पैमाने पर आयामी।

यह भी देखें

टिप्पणियाँ

  1. Lebesgue, Henri (1921). "दो स्थानों के बिंदुओं के बीच पत्राचार पर" (PDF). Fundamenta Mathematicae (in français). 2: 256–285. doi:10.4064/fm-2-1-256-285.
  2. Duda, R. (1979). "आयाम की अवधारणा की उत्पत्ति". Colloquium Mathematicum. 42: 95–110. doi:10.4064/cm-42-1-95-110. MR 0567548.
  3. Lebesgue 1921.
  4. Kuperberg, Krystyna, ed. (1995), Collected Works of Witold Hurewicz, American Mathematical Society, Collected works series, vol. 4, American Mathematical Society, p. xxiii, footnote 3, ISBN 9780821800119, Lebesgue's discovery led later to the introduction by E. Čech of the covering dimension.
  5. Ostrand 1971.
  6. Proposition 3.2.2 of Engelking, Ryszard (1978). Dimension theory (PDF). North-Holland Mathematical Library. Vol. 19. Amsterdam-Oxford-New York: North-Holland. ISBN 0-444-85176-3. MR 0482697.
  7. Godement 1973, II.5.12, p. 236


संदर्भ


अग्रिम पठन

ऐतिहासिक

  • कार्ल मेन्जर, जनरल स्पेसेस एंड कार्टेसियन स्पेसेस, (1926) एम्स्टर्डम एकेडमी ऑफ साइंसेज के लिए संचार। क्लासिक्स ऑन फ्रैक्टल्स में पुनर्मुद्रित अंग्रेजी अनुवाद, जेराल्ड ए एडगर, संपादक, एडिसन-वेस्ले (1993) ISBN 0-201-58701-7
  • कार्ल मेन्जर, आयाम थ्योरी, (1928) बी.जी. टेबनेर पब्लिशर्स, लीपज़िग।

आधुनिक

बाहरी संबंध